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in neurodegenerative and neuropsychiatric 
disorders
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Abstract 

Over the past two decades, there has been a growing recognition of the physiological importance and pathological 
implications surrounding the surface diffusion of AMPA receptors (AMPARs) and their diffusional trapping at syn-
apses. AMPAR surface diffusion entails the thermally powered random Brownian lateral movement of these receptors 
within the plasma membrane, facilitating dynamic exchanges between synaptic and extrasynaptic compartments. 
This process also enables the activity-dependent diffusional trapping and accumulation of AMPARs at synapses 
through transient binding to synaptic anchoring slots. Recent research highlights the critical role of synaptic recruit-
ment of AMPARs via diffusional trapping in fundamental neural processes such as the development of the early 
phases of long-term potentiation (LTP), contextual fear memory, memory consolidation, and sensory input-induced 
cortical remapping. Furthermore, studies underscore that regulation of AMPAR diffusional trapping is altered 
across various neurological disease models, including Huntington’s disease (HD), Alzheimer’s disease (AD), and stress-
related disorders like depression. Notably, pharmacological interventions aimed at correcting deficits in AMPAR diffu-
sional trapping have demonstrated efficacy in restoring synapse numbers, LTP, and memory functions in these diverse 
disease models, despite their distinct pathogenic mechanisms. This review provides current insights into the molecu-
lar mechanisms underlying the dysregulation of AMPAR diffusional trapping, emphasizing its role as a converging 
point for multiple pathological signaling pathways. We propose that targeting AMPAR diffusional trapping represents 
a promising early therapeutic strategy to mitigate synaptic plasticity and memory deficits in a spectrum of brain disor-
ders, encompassing but not limited to HD, AD, and stress-related conditions. This approach underscores an integrated 
therapeutic target amidst the complexity of these neurodegenerative and neuropsychiatric diseases.
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Background
One major cellular correlate of learning and memory is 
synaptic plasticity, which refers to the ability of neurons 
to modify the efficacy of communication at specialized 
neuronal junctions called synapses in response to specific 
patterns of activity. These dynamic, bidirectional, and 
reversible changes in synaptic efficacy allow the storage 
and utilization of large amounts of information. The vast 
majority of synapses in the mammalian central nervous 
system (CNS) are chemical synapses, where informa-
tion is conveyed through the release of neurotransmitters 
from the presynaptic terminal and their binding to post-
synaptic receptors. Synaptic plasticity can thus arise from 
changes in the probability of neurotransmitter release 
(presynaptic mechanisms) or from modifications in the 
number, composition, biophysical properties (e.g. con-
ductance or open probability), and nanoscale position-
ing of neurotransmitter receptors relative to presynaptic 
release sites. These latter changes determine the sensitiv-
ity of postsynaptic neurons to neurotransmitters (post-
synaptic mechanisms) [1].

At excitatory synapses, glutamate, the primary excita-
tory neurotransmitter in the CNS, activates five main 
classes of glutamate receptors: four ionotropic recep-
tors (AMPA receptors [AMPARs], NMDA receptors 
[NMDARs], kainate receptors, and delta receptors 
[GluD]) [2], and one class of metabotropic receptors 
(G-protein-coupled metabotropic glutamate recep-
tors [mGluRs]). All these classes of glutamate receptors 
are critically involved in the induction, expression, and/
or modulation of synaptic plasticity. The most exten-
sively studied forms of long-lasting synaptic plasticity in 
the vertebrate CNS are NMDAR-dependent long-term 
potentiation (LTP) and long-term depression (LTD) of 
synaptic transmission. While presynaptic mechanisms 
may be involved under certain conditions, NMDAR-
dependent LTP and LTD are triggered by the activation 
of postsynaptic NMDARs and are expressed through 
an increase and decrease in the synaptic abundance of 
AMPAR complexes, and/or changes in their subunit 
composition [1]. Consequently, tremendous effort has 
been devoted to understanding the dynamic regulation of 
AMPAR trafficking into and out of synapses.

AMPAR trafficking involves several key processes: 
intracellular transport, endocytosis/exocytosis, endoso-
mal recycling, surface diffusion, diffusional trapping at 
synapses, and degradation. Newly synthesized receptors 
are transported intracellularly in vesicles along microtu-
bules within dendrites, where they can be delivered by 
exocytosis next to synapses [3, 4]. However, AMPARs 
at synapses were initially thought to be stable until the 
late 1990s, when it was discovered that they constantly 
undergo exocytosis and endocytosis, allowing them to 

recycle continuously between the neuronal surface and 
intracellular pools [5–9]. This understanding was fur-
ther expanded in the early 2000s, with the discovery 
that AMPARs diffuse rapidly within the plasma mem-
brane via thermally powered Brownian diffusion, ena-
bling their exchange between synaptic and extrasynaptic 
compartments and their reversible trapping at synapses 
through binding to various intracellular and extracellular 
scaffolds [10–12]. Together, these trafficking processes 
establish a dynamic equilibrium among intracellular, syn-
aptic, and extrasynaptic compartments, which ultimately 
determines the number of AMPARs at synapses. While 
intracellular trafficking facilitates coarse-scale receptor 
distribution along dendrites, local regulation within or 
near the synapse through endocytosis/exocytosis, surface 
diffusion, and diffusional trapping allows fine-tuned con-
trol of the number of AMPARs at synapses.

Surface diffusion has received increasing attention due 
to its unique properties. Firstly, unlike intracellular trans-
port and exocytosis/endocytosis that require energy from 
the hydrolysis of adenosine triphosphate [13, 14], surface 
diffusion is driven solely by thermal agitation, result-
ing in ‘free’ movement that incurs no energetic cost to 
the cell [1]. Secondly, surface diffusion is highly efficient 
for short-range displacement within the plasma mem-
brane. For instance, synaptic AMPARs can escape from a 
200-nm-diameter region via diffusion within tens of mil-
liseconds [15, 16], and their redistribution between syn-
aptic and extrasynaptic sites occurs within subseconds to 
tens of seconds [17–21].

Thirdly, in contrast to AMPAR endocytosis and exocy-
tosis, which primarily occur at perisynaptic and extrasyn-
aptic sites [19, 22–28], surface diffusion allows AMPARs 
to directly reach and leave the postsynaptic density (PSD) 
as well as to diffuse within the PSD between subdomains 
[29, 30]. Consequently, surface diffusion plays a pivotal 
role in synaptic delivery and removal of AMPARs: exo-
cytosed AMPARs at perisynaptic/extrasynaptic sites 
require surface diffusion to reach the PSD [17, 19]; while 
endocytosis may require AMPARs to diffuse from the 
PSD to endocytic zones located at perisynaptic/extrasyn-
aptic sites.

Fourthly, surface diffusion is driven by weak thermal 
forces that are easily influenced by protein–protein inter-
actions, which are often transient and reversible, between 
AMPARs and synaptic trapping slots at the PSD. This 
dynamic interaction allows synaptic AMPARs to con-
stantly switch between a mobile (diffusional) state and an 
immobile (trapped) state in a process known as reversible 
diffusional trapping at synapses [1, 4, 11]. The strength of 
diffusional trapping can be finely modulated during syn-
aptic plasticity through changes in the number, affinity, 
availability, and localization of synaptic trapping slots, 



Page 3 of 19Choquet et al. Translational Neurodegeneration  (2025) 14:8 

leading to alterations in the abundance and nanoscale 
positioning of synaptic AMPARs, which ultimately deter-
mine the efficiency of synaptic transmission [29–37]. 
Thus, the interplay between surface diffusion and dif-
fusional trapping at synapses provides an efficient, pre-
cise and energy-saving mechanism underlying synaptic 
plasticity.

Recent studies have demonstrated that AMPAR sur-
face diffusion plays a critical role in LTP. Using AMPAR 
immobilization approaches in-vitro and in-vivo, these 
studies showed that the initial phase of LTP (the first 
few minutes) is mediated by the rapid recruitment of 
diffusive AMPARs already present on the neuronal sur-
face [17, 38]. While subsequent exocytosis of AMPARs 
is essential for the maintenance of LTP [5, 17, 39, 40], 
interfering with the diffusion of newly exocytosed 
AMPARs abolishes LTP maintenance [17]. This suggests 
that newly exocytosed AMPARs at extrasynaptic sites 
must diffuse to synaptic sites to sustain LTP. Moreover, 
blocking AMPAR surface diffusion in the hippocampus 
in-vivo using various crosslinking approaches signifi-
cantly impairs hippocampus-dependent contextual fear 
memory [17, 38]. Similar immobilization paradigms have 
shown that AMPAR surface diffusion is also crucial for 
in  vivo memory consolidation [41] and LTP in the bar-
rel cortex induced by whisker stimulation [42]. Collec-
tively, these findings suggest that the synaptic delivery of 
AMPARs via surface diffusion is an essential mechanism 
for the expression of LTP, various forms of memory, cor-
tical remapping, and adaptive behaviors during sensory 
experiences [42, 43].

Mechanistically, we have demonstrated that dur-
ing LTP, AMPAR complexes are recruited to synapses 
through the diffusional trapping of transmembrane 
AMPA receptor regulatory proteins (TARPs), such as 
Stargazin (TARP γ2), by the major postsynaptic density 
scaffold protein, PSD-95 [4, 11, 31, 44]. Additionally, the 
involvement of other TARP family members, such as 
γ8, in this diffusion-trapping process has also been pro-
posed [45–47]. Our findings, along with those of others, 
indicate that NMDAR activation leads to the activa-
tion of calcium/calmodulin-dependent protein kinase II 
(CaMKII), resulting in the phosphorylation of Stargazin 
and γ8. This phosphorylation enhances their binding to 
the synaptic scaffold PSD-95 (Fig.  1a) [31, 44, 48]. Star-
gazin forms highly concentrated and dynamic conden-
sates with PSD-95 or PSD-95-assembled postsynaptic 
complexes through phase separation, reminiscent of 
Stargazin/PSD-95-mediated AMPAR synaptic clustering 
and trapping [32]. Importantly, the TARP/PSD-95 inter-
action is necessary for synaptic AMPAR trafficking and 
LTP [49]. Recent studies, however, have challenged the 
traditional view of CaMKII as primarily a kinase in LTP, 

highlighting instead its critical structural role in synaptic 
plasticity [50–52]. These findings prompt a reevaluation 
of the exact mechanisms underlying the activity-depend-
ent diffusional trapping of AMPARs during LTP.

Beyond the critical role of TARP binding to PSD-95, 
other AMPAR auxiliary subunits and PDZ-domain-
containing adhesion proteins—such as members of 
the Shisa family and neuroligin—likely contribute to 
activity-dependent AMPAR trapping during LTP and 
memory [43, 53–55]. There is also growing interest in 
the role of the extracellular N-terminal domains (NTDs) 
of AMPARs in stabilizing AMPARs at synapses. These 
NTDs may interact with extracellular proteins such as 
pentraxins, cadherins, and noelin, potentially functioning 
as diffusion-trapping scaffolds. However, the mechanisms 
by which neuronal activity regulates these interactions 
remain unclear [45, 56–59]. Notably, recent studies 
revealing a pH-dependent splaying of certain GluA subu-
nit NTDs could shed new light on how AMPAR NTDs 
interact with matrix proteins [60–62]. In summary, these 
findings highlight the complex interplay of molecular 
mechanisms underlying activity-dependent AMPAR dif-
fusional trapping during LTP, involving TARPs, auxiliary 
subunits, adhesion proteins, and extracellular interac-
tions. Future research will be essential to unravel how 
these processes are dynamically regulated to support 
synaptic plasticity and memory formation.

The pathophysiological role of AMPAR diffusional 
trapping has been recently demonstrated in several 
rodent models of neurodegenerative and neuropsychi-
atric disorders, including Huntington’s disease (HD), 
Alzheimer’s disease (AD), and depression. Despite their 
distinct etiologies and pathogenesis, models of HD, AD, 
and depression exhibit similar dysregulation of AMPAR 
diffusional trapping, early-stage impairment of hip-
pocampal LTP prior to neuronal loss, and early-onset 
memory deficits [18, 63, 64]. Notably, pharmacologi-
cal interventions that re-establish AMPAR diffusional 
trapping also lead to restoration of synapse numbers, 
hippocampal LTP, and memory in these models. These 
findings suggest that dysregulated AMPAR diffusional 
trapping may serve as a common pathological substrate 
across these disorders and presents a promising thera-
peutic target.

In this review, we underscore the notion that dysregu-
lation of AMPAR diffusional trapping may be a unifying 
and convergent mechanism underlying brain disorders 
associated with impaired learning and memory. We pro-
pose that targeting AMPAR diffusional trapping repre-
sents a promising early therapeutic strategy to restore 
synaptic plasticity and ameliorate memory deficits across 
a spectrum of neurodegenerative and neuropsychiatric 
disorders.
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Dysregulation of AMPAR diffusional trapping in HD
HD is an autosomal-dominant neurodegenerative disor-
der caused by a mutation in the huntingtin gene, char-
acterized by more than 36 CAG repeats. This mutation 
results in the production of a mutant huntingtin pro-
tein with expanded polyglutamine repeats (polyQ) [65]. 
Clinically, HD manifests as motor dysfunction, psychi-
atric disturbance (eg. depression), and cognitive deficits. 
These symptoms have traditionally been attributed to the 
degeneration or loss of medium-sized spiny neurons in 
the striatum and cortical neurons. However, increasing 
evidence indicates that HD murine and primate models, 
as well as early-stage HD patients and clinically asymp-
tomatic HD mutation carriers, exhibit cognitive deficits 
and psychiatric disturbance well before the appearance 
of classical neuropathology or motor symptoms [66–
73]. This suggests that cellular dysfunction, rather than 
neuronal loss, underlies the initial development of the 
disease.

Early deficits in synaptic plasticity prior 
to neurodegeneration in different HD mouse models
Various HD mouse models exhibit impaired hippocam-
pal synaptic plasticity at pre- or early-symptomatic 

stage. For example, R6/1 heterozygous transgenic mouse 
model, one of the most widely used HD models, which 
overexpresses the first exon of human huntingtin with 
approximately 115 polyQ repeats, show deficits in hip-
pocampal LTP at 5  weeks of age [74], well before the 
onset of motor deficits and striatal neuron loss observed 
at 12 weeks of age [75, 76]. Similarly, R6/2 heterozygous 
transgenic mouse model, which overexpresses the first 
exon of human huntingtin with 150 polyQ repeats, show 
reduced hippocampal LTP from as early as 5 weeks, coin-
ciding with the onset of motor symptoms between 5 and 
18  weeks [69, 77–79]. In addition to LTP deficits, R6/2 
mice display abnormally enhanced hippocampal LTD 
between 5 and 18  weeks of age [79], while R6/1 mice 
regain the ability to support LTD, which is typically lost 
in the CA1 region of the hippocampus, at 12 weeks of age 
[80].

Although these transgenic mice exhibit a rapid onset 
of phenotypes advantageous for mechanistic studies, 
overexpression of the protein may induce undesired arti-
facts and the lack of full-length huntingtin protein may 
not perfectly replicate the human condition. A comple-
mentary HD model, the knock-in (KI) mouse model, 
incorporates the mutation directly into its huntingtin 

Fig. 1 Effects of BDNF-TrkB and NMDAR signaling on AMPAR diffusional trapping under physiological and pathological conditions. Left panel 
(physiological condition): BDNF binding to TrKB receptors (1) and  Ca2+ influx via synaptic NMDARs (2) activate multiple signaling cascades, 
including CaMKII (3), PI3K (4), and Ras-ERK (5). Activated CaMKII translocates to the postsynaptic density (PSD), where it phosphorylates stargazin 
(TARP γ2), potentiates the interaction between PSD-95 and stargazin, and stabilizes AMPAR anchoring (6), thereby decreasing AMPAR surface 
diffusion. PI3K and Ras-ERK also contribute to the stabilization of synaptic AMPARs, although the direct trapping mechanism remains to be 
explored (7, 8). Elevated  Ca2+ levels promote BDNF gene expression by facilitating the binding of transcription factor, such as CREB and CaRF, 
to regulatory elements of BDNF (9). Extrasynaptic GluN2B-NMDARs counteract the effects of synaptic NMDARs by triggering CREB and ERK shut-off 
and preventing CaMKII translocation to synapses (10). Right panel (pathological conditions, e.g. HD and AD): impaired BDNF-TrkB signaling 
leads to deficiencies in CaMKII, PI3K, and Ras-ERK pathways. Additionally, abnormally enhanced extrasynaptic NMDAR signaling significantly 
promotes a dominant CREB shut-off pathway, blocking the induction of BDNF expression (10). It also shuts off ERK and sequesters active CaMKII 
due to CaMKII’s high binding affinity for GluN2B-containing NMDARs, preventing CaMKII from translocating to synapses. The combined effects 
of impaired BDNF-TrKB signaling and imbalanced synaptic and extrasynaptic NMDAR signaling synergistically weaken the diffusion trapping 
mechanism, destabilize synaptic AMPARs, and increase AMPAR surface mobility



Page 5 of 19Choquet et al. Translational Neurodegeneration  (2025) 14:8 

gene, closely replicating the genetic aspects of the human 
condition. This model expresses the huntingtin protein 
at endogenous levels and, similar to HD patients, exhib-
its a delayed onset of overt symptoms [81]. The  HdhQ92 
and  HdhQ111 knock-in mice, which have 92 or 111 CAG 
repeats inserted into the huntingtin gene, show a signifi-
cant reduction in hippocampal LTP around 8–10 weeks 
of age, months before the onset of motor symptoms [64, 
82]. Similarly,  HdhCAG140/+ knock-in mouse model, which 
has 140 polyQ repeats inserted into the mouse hunting-
tin protein, exhibit hippocampal LTP deficits at 8 weeks 
of age [83]. Another complementary mouse model 
is the yeast artificial chromosome (YAC) transgenic 
mice, which express full-length huntingtin. In YAC72 
mice, which carry 72 polyQ repeats, high-frequency 
stimulation (HFS) failed to induce hippocampal LTP at 
10  months of age, preceding selective striatal neurode-
generation first observed at 12  months [84]. Moreover, 
HFS protocols induced depression rather than potentia-
tion in 10-month-old YAC72 mice [84].

Deficits in synaptic plasticity appear to arise mainly 
from postsynaptic mechanisms, as studies in  HdhQ111/

Q111 and HdhCAG 140/+ knock-in models as well as in R6/1 
and R6/2 heterozygous transgenic mouse models found 
no detectable differences in presynaptic parameters in 
the CA1 region of the hippocampus [79, 80, 82, 83].

In summary, these findings suggest that HD begins with 
disturbance of synaptic plasticity, which subsequently 
progresses to motor pathology and neurodegeneration.

Dysregulation of AMPAR diffusional trapping via abnormal 
brain‑derived neurotrophic factor (BDNF) signalling 
pathways
We recently identified dysregulation of AMPAR dif-
fusional trapping as one key postsynaptic mechanism 
underlying LTP deficits in HD. The HD-causing muta-
tion leads to the destabilization of AMPARs at the post-
synaptic membrane and increases the speed of AMPAR 
surface diffusion under basal condition or after chemi-
cally-induced LTP in various complementary HD models. 
These models include ectopic expression of either wild-
type or polyQ–exon1, as well as polyQ-full-length hun-
tingtin constructs in rat primary hippocampal neurons, 
hippocampal neurons from R6/1 and R6/2 heterozygous 
transgenic mice, and homozygous  HdhQ111/Q111 and het-
erozygous  HdhCAG140/+ knock-in mouse models [64].

The upstream signaling pathways that impair the dif-
fusional trapping machinery in HD appear to involve 
BDNF and its high-affinity receptor, tropomyosin recep-
tor kinase B (TrkB) [64, 85–90]. Activation of BDNF–
TrkB can trigger three key signaling cascades that impact 
synaptic recruitment of AMPARs: PLCγ (phospholipase 
Cγ)-CaMKII, phosphatidylinositol 3-kinase (PI3K)-Akt, 

and Ras-Raf-MEK-extracellular-signal-regulated kinase 
(ERK) signaling pathways (Fig. 1) [91–94].

Critically, these signaling pathways are major regulators 
of diffusional trapping of AMPARs. First, synaptic CaM-
KII is essential for immobilizing AMPARs at synapses 
under basal conditions and after LTP via phosphoryla-
tion of TARPs, facilitating their binding to the synaptic 
scaffolding protein PSD-95 [44, 95]. Second, the PI3K 
signaling pathway is involved in immobilizing surface 
AMPARs, as inhibiting PI3K with LY294002 increases 
the surface mobility of recombinant AMPARs in hip-
pocampal neurons [96]. Importantly, BDNF induces the 
translocation of PSD-95, a synaptic scaffold critical for 
AMPAR immobilization, to dendrites through PI3K–
AKT signalling [97]. Last, while the role of ERK signal-
ing in AMPAR diffusion is not well understood, the ERK 
pathway has been shown to increase AMPAR exocyto-
sis, thereby expanding the extrasynaptic pool of mobile 
AMPAR available for synaptic anchoring [26].

Various HD mouse models, as well as HD subjects, 
exhibit reductions of cortical and hippocampal BDNF 
mRNA and protein [64, 85, 88–90, 98] as well as BDNF 
intracellular transport [64, 88, 98, 99]. The downstream 
signal transduction of BDNF–TrkB is also reduced in var-
ious HD mouse models [86, 87, 100]. Impaired activation 
of CaMKII [64, 85], PI3K [87], and ERK signaling path-
ways [101, 102] has been reported in different HD knock-
in mouse models. Additionally, the interaction between 
PSD-95 and stargazin (TARP γ-2), a key component of 
diffusional trapping machinery [20, 44], is dramatically 
disrupted in the hippocampus of  HdhQ111/Q111 knock-in 
HD mouse models and in hippocampal neurons overex-
pressing full-length huntingtin, despite the unchanged 
protein levels of stargazin and PSD-95 [64]. This hypoth-
esis is further corroborated by evidence that exogenous 
BDNF application rescues the diffusional trapping of 
AMPARs [64] and restores HD-associated synaptic plas-
ticity [82]. This rescue effect on AMPAR surface diffusion 
is blocked by the BDNF scavenger TrkB-Fc, the CaMKII 
inhibitor KN-93, or in neurons expressing ΔC stargazin 
(ΔC Stg), in which the binding domain to PDZ-domain 
scaffold proteins like PSD-95 is deleted [64].

Potential role of extrasynaptic NMDARs in AMPAR 
diffusional trapping deficits in HD
An imbalance between synaptic NMDARs (predomi-
nantly composed of GluN2A subunits in mature neu-
rons) and extrasynaptic NMDARs (mainly associated 
with GluN2B subunits in mature neurons) may also 
contribute to deficits in AMPAR diffusional trapping 
[103–105].

Synaptic and extrasynaptic NMDARs exert oppos-
ing effects on cyclic AMP (cAMP) response element 
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(CRE)-binding protein (CREB) function and BDNF 
gene regulation [106]. Calcium entry through synaptic 
NMDAR induces CREB activity and BDNF gene tran-
scription, whereas calcium entry through extrasynaptic 
NMDARs activates a dominant CREB shut-off pathway 
that blocks BDNF gene expression [107]. Consequently, 
overactivation of extrasynaptic NMDARs may lead 
to a decrease in BDNF expression, critically impact-
ing the diffusional trapping of AMPARs. Alternatively, 
extrasynaptic GluN2B-NMDARs in HD models may 
destabilize synaptic AMPAR by sequestering CaMKII 
at extrasynaptic sites, preventing it from translocating 
to synapses to immobilize AMPARs due to the higher 
binding affinity of GluN2B for CaMKII compared to 
synaptic GluN2A-containing NMDARs [108].

Taken together, these studies suggest that an imbal-
ance between synaptic and extrasynaptic NMDAR 
activity can impair BDNF production and TrkB signal-
ing, ultimately leading to the synaptic destabilization of 
AMPARs. This sequence of events may create a vicious 
cycle, where reduced BDNF expression exacerbates 
NMDAR imbalances and AMPAR instability, further 
amplifying synaptic dysfunction. Over time, this dys-
regulation contributes to the progressive breakdown of 
neuronal networks, resulting in the behavioral deficits 
characteristic of HD. Interventions targeting this cellu-
lar axis—such as enhancing BDNF signaling, restoring 
NMDAR balance, or stabilizing AMPARs—offer poten-
tial strategies to disrupt this cycle and mitigate HD-
related synaptic and behavioral impairments.

Dysregulation of AMPAR diffusional trapping in AD
AD is a neurodegenerative disease clinically charac-
terized by progressive cognitive impairment, with 
early-onset symptoms including memory deficits and 
neuropsychiatric manifestations such as depression. 
Traditionally, these symptoms were thought to result 
primarily from neuronal degeneration. However, sub-
stantial evidence suggests that AD begins with synap-
tic failure prior to overt neuronal degeneration [109]. 
The clinical relevance of the “synaptotoxic” hypothesis 
is underscored by several studies indicating that synap-
tic loss correlates better with the severity of cognitive 
deficits in AD than neuronal loss [110, 111]. The exact 
causes of AD remain unclear, but amyloid-β (Aβ) and 
tau proteins are believed to play a central role in its eti-
ology and pathogenesis.

Early deficits in synaptic plasticity prior 
to neurodegeneration in different AD mouse models
It is now well accepted that soluble and oligomeric 
forms of Aβ (oAβ) weaken synaptic transmission by 

both preventing LTP [112, 113] and facilitating LTD 
[114, 115]. Regarding LTP, numerous studies have shown 
that both synthetic and naturally secreted forms of oAβ 
consistently inhibit the induction of LTP in  vitro and 
in vivo [112, 113]. Consistent with these findings, LTP is 
impaired in transgenic AD mouse models even before the 
accumulation of amyloid plaques. Regarding LTD, sev-
eral studies have shown that oAβ not only facilitates the 
induction of LTD [114, 115], but that chronic application 
of oAβ is sufficient to weaken synaptic transmission in a 
manner resembling LTD.

Because both LTP and LTD rely heavily on NMDAR 
activation, calcium-dependent signaling and AMPAR 
trafficking, oAβ may interfere with one or all of these cel-
lular processes [116–118]. On the neuronal surface, oAβ 
can disrupt NMDAR function either directly, through 
interaction [119, 120], or indirectly, by interacting with 
other transmembrane proteins [121, 122]. The critical 
role of NMDARs in oAβ synaptotoxicity is highlighted 
by multiple studies demonstrating that NMDAR antago-
nists fully rescued the detrimental effects of oAβ [114, 
123–125]. GluN2B-containing NMDARs are particularly 
associated with synaptotoxicity as the specific antagonist 
ifenprodil rescued both the LTP deficits and synaptic loss 
mediated by oAβ [126–129].

Downstream of NMDAR activation, it is thought that 
calcium shifts the balance between CaMKII and the 
calcium-dependent phosphatase calcineurin at synapses 
toward phosphatase activation, which eventually results 
in AMPAR dephosphorylation, AMPAR endocytosis and 
synaptic weakening [116, 130, 131]. The critical role of 
AMPAR endocytosis in oAβ-mediated synaptotoxicity 
is highlighted by studies showing that blocking AMPAR 
endocytosis [114] or the signalling associated with 
AMPAR internalization [132] prevented synaptotoxicity. 
Once internalized, AMPARs undergo ubiquitination and 
are sorted into late endosomes for degradation, resulting 
in a decreased number on the neuronal surface [133].

Dysregulation of AMPAR diffusional trapping in AD 
via abnormal CaMKII signalling
In addition to facilitating endocytosis, it is possible 
that oAβ may impact the surface diffusion of AMPARs. 
Because the endocytic machinery is located at peri- and 
extrasynaptic sites [27], AMPAR destabilization and lat-
eral diffusion to these sites are likely prerequisites for the 
endocytosis of synaptic AMPARs [118]. Our previous 
work showed that the diffusional trapping and stabiliza-
tion of AMPAR at synapses strongly rely on CaMKII-
dependent phosphorylation of stargazin [31, 44]. This 
raises the possibility that the oAβ-mediated shift toward 
phosphatase activity might trigger the destabilization 
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and escape of synaptic AMPARs. Consistent with this 
hypothesis, we demonstrated that overexpression of the 
amyloid-precursor protein (APP) or prolonged exposure 
to oAβ is sufficient to destabilize synaptic AMPARs [63]. 
Importantly, we found that AMPAR destabilization con-
tributes to oAβ-mediated synaptotoxicity, as prevent-
ing it via a crosslinking approach fully rescued synaptic 
loss [63]. Mechanistically, we showed that oAβ mediates 
the destabilization of surface AMPAR via activation of 
GluN2B-containing NMDARs and, surprisingly, through 
the activation of CaMKII. We further confirmed that 
CaMKII is required for synaptotoxicity as KN-93 and 
tatCN21, two mechanistically distinct CaMKII inhibi-
tors, completely rescued the oAβ-mediated deficits in 
LTP and synaptic loss [63].

Potential role of extrasynaptic NMDARs in AMPAR 
diffusional trapping deficits in AD
While the oAβ-mediated activation of CaMKII aligns 
with the well-documented structural and functional cou-
pling between GluN2B and CaMKII [134, 135], as well as 
the contributing role of CaMKII activity in oAβ toxicity 
[136–139], it is at odds with our previous studies show-
ing that NMDAR and CaMKII activation during LTP is 
necessary for synaptic stabilization of AMPAR [31, 44]. 
We propose that these discrepancies result from the dis-
tinct subcellular localizations of NMDARs and CaM-
KII engaged during LTP compared to those activated in 
response to oAβ exposure. While LTP relies on the exclu-
sive activation of synaptic NMDAR and the translocation 
of CaMKII to activated synapses [44, 135, 140], extracel-
lular oAβ triggers prominent activation of extrasynaptic 
NMDAR and therefore non-synaptic CaMKII [63]. In 
fact, several studies have shown that selective activation 
of extrasynaptic GluN2B-containing NMDARs is respon-
sible for the oAβ-mediated LTP impairments [141–143].

Because extrasynaptic NMDAR signaling not only 
antagonizes but also dominates over synaptic signaling 
[103, 107], exposure to oAβ prevents subsequent activity-
dependent synaptic translocation of CaMKII and the dif-
fusional trapping of AMPAR during LTP [63, 144–146]. 
Prolonged exposure to oAβ likely leads to a reduction 
in the synaptic pool of active CaMKII, disruption of the 
stargazin–PSD-95 interaction, destabilization and escape 
of synaptic AMPARs, and ultimately, synaptic loss. This 
hypothesis is consistent with findings of reduced synap-
tic pool of active CaMKII in transgenic animal models of 
AD and the observation that restoring the synaptic CaM-
KII levels normalizes synaptic function [144]. The clini-
cal relevance of these findings is further supported by a 
study in postmortem AD brains that showed a significant 
redistribution of active CaMKII from the synapse to the 
cytoplasm [147]. Remarkably, the relative distribution 

of active CaMKII strongly predicts the premortem cog-
nitive deficits in these subjects [147]. The critical role of 
non-synaptic CaMKII activation is further highlighted 
by studies showing that oAβ leads to the activation and 
increased association of CaMKII with metabotropic glu-
tamate receptor 5 (mGluR5), which are predominantly 
localized extrasynaptically [148–150].

Altogether, these findings suggest that prolonged expo-
sure to oAβ leads to a reduction in the synaptic pool of 
active CaMKII, ultimately resulting in synaptic destabili-
zation of AMPARs. Thus, normalizing synaptic CaMKII 
levels may be a sensitive strategy for restoring synap-
tic function during the early synaptotoxic stages of AD. 
Since the anchoring of CaMKII at synapses strongly relies 
on its autonomous activation via autophosphorylation 
at Thr 286 [134, 135], manipulations aimed at facilitat-
ing autophosphorylation might prevent CaMKII mislo-
calization and restore synaptic function in AD models. 
Consistent with this idea, behavioral training amelio-
rated learning and memory deficits in the Tg2576 trans-
genic and in sporadic AD models by increasing CaMKII 
autophosphorylation [151, 152].

In addition to NMDAR being a putative receptor for 
oAβ [119, 121], it is well accepted that oAβ can bind to 
several other postsynaptic receptors, including mGluR5, 
the prion protein receptor PrP(C) [148, 153], voltage-
dependent calcium channels [154], the α7-nicotinic 
receptor [155], and the ephrin-type B2 receptors [122]. 
Although these putative oAβ receptors are diverse 
in nature, they all regulate intracellular  Ca2+ levels, 
either directly or indirectly, and consequently influence 
CaMKII activation. Extensive research showing that 
disruptions in  Ca2+ homeostasis are central to AD patho-
genesis [156–158] suggests that CaMKII dysfunction and 
impaired stabilization of synaptic AMPARs might repre-
sent key outcomes of  Ca2+ dysregulation [139].

Notably, there are striking parallels between oAβ and 
mutant Huntingtin (mHTT) synaptotoxicity. Similar to 
oAβ, mHTT toxicity is associated with the overactivation 
of extrasynaptic GluN2B-containing NMDARs (Fig.  1) 
[103–105] and, as our studies show, with prominent 
destabilization of synaptic AMPARs [63, 64]. Intriguingly, 
BDNF levels are also reduced in the brains of AD patients 
[98], and BDNF has proven to be beneficial both in AD 
[158] and HD models [64], likely by attenuating extra-
synaptic NMDAR signaling [93] and promoting CaMKII 
autophosphorylation [158]. BDNF might also promote 
the activation of the PI3K cascade, which, like CaMKII, 
is critical for the surface stabilization of AMPARs [96] 
and whose downregulation has been implicated in oAβ-
mediated synaptotoxicity [159]. Taken together, these 
mechanistic similarities are consistent with the notion 
that dysregulation in AMPAR diffusional trapping may 
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represent a shared mechanism leading to cognitive defi-
cits in these pathologies.

Dysregulation of AMPAR diffusional trapping 
in rodent models of stress and depression
Depression (major depressive disorder) is a complex, 
heterogeneous mood disorder characterized by a persis-
tent feeling of sadness and loss of interest. Etiologically, 
depression is often linked to stress, with around 80% 
of depressive episodes preceded by major life events or 
ongoing stressor in community samples [160–164]. Simi-
lar to HD and AD, cognitive impairments, including defi-
ciencies in long-term and working memory, are essential 
aspects of depression symptomatology [165–167].

The molecular mechanisms underlying depression 
are not fully understood. Traditionally, the monoamine 
hypothesis attributes depression to a depletion of mon-
oamines–serotonin, norepinephrine, and dopamine—in 
the CNS. This hypothesis is primarily based on the fact 
that traditional antidepressants—such as selective sero-
tonin reuptake inhibitors (SSRIs), norepinephrine reup-
take inhibitors, tricyclic antidepressants (TCAs), and 
monoamine oxidase inhibitors—act by raising extracellu-
lar monoamine levels. However, monoamine hypothesis 
has been increasingly challenged over the last two dec-
ades [167, 168].

First, conventional monoaminergic drugs display a 
therapeutic time lag of several weeks to months and 
show limited efficacy [168, 169]. Second, the selective 
serotonin reuptake enhancer tianeptine, which decreases 
extracellular levels of serotonin and primarily targets glu-
tamatergic system, has been proven effective for treating 
depression [170, 171]. Third, drugs that target glutamate 
receptors, such as NMDAR antagonists, AMPAR positive 
allosteric modulators, metabotropic glutamate receptor 
(mGluR) negative allosteric modulators, also exhibit anti-
depressant effects in animal models or depressed patients 
[168, 172–174]. These findings highlight the significant 
role of the glutamatergic system in the development of 
depression and the effectiveness of antidepressants.

Deficits in synaptic plasticity in different mouse models 
of stress and depression
In rodent models of depression, stress hormones and 
behavioral stress induce changes in AMPAR traffick-
ing and synaptic plasticity, depending on the type of 
stressor, timing, and brain regions [167]. Generally, 
acute stress has bidirectional effects on synaptic plas-
ticity, either enhancing or impairing LTP, whereas 
chronic stress tends to impair LTP and facilitate LTD 
in the hippocampus and prefrontal cortex (PFC)–two 

critical  regions for learning and memory [175]. Nota-
bly, various classes of antidepressants can reverse these 
changes, and their antidepressant effects are blocked by 
AMPAR antagonists, suggesting that AMPARs play a 
central role in mediating the antidepressant effects of 
these drugs [167, 168, 176].

Corticosterone, a principal glucocorticoid secreted 
in response to stress, induces biphasic changes in hip-
pocampal synaptic plasticity. Short-term (10  min) 
application of corticosterone (100  nmol/L) facilitates 
LTP in hippocampal CA1 pyramidal neurons [177, 178]. 
Over a few hours, corticosterone increases AMPAR 
miniature and evoked excitatory postsynaptic current 
(EPSC) amplitudes, as well as synaptic GluA2-AMPAR 
content, through intracellular glucocorticoid receptors, 
potentially occluding further LTP induction [178, 179]. 
Similarly, in the PFC, a short-term application of corti-
costerone (100 nmol/L, 20 min) to PFC neurons signifi-
cantly increases synaptic GluA1-AMPAR content and 
AMPAR-EPSC amplitude [180]. In contrast, prolonged 
corticosterone administration reduces the protein lev-
els of GluA2/3-containing AMPARs [181].

Behavioral stressors, such as acute inescapable stress 
(AIS) and acute restraint plus tailshock stress (ARTS), 
impair LTP in the hippocampal CA1 and DG regions 
[18, 182–187] and in the PFC [188–191]. Conversely, 
acute forced swim stress (AFSS) potentiates LTP in 
the ventral hippocampus [192] and AMPAR EPSCs 
in PFC pyramidal neurons via glucocorticoid recep-
tor activation, and enhances PFC-dependent working 
memory [180]. Moreover, ARTS promotes LTD in the 
CA1 region of the hippocampus [187, 193] and AFSS 
facilitates LTD in the dorsal hippocampus [192]. In 
contrast, chronic stress models such as chronic unpre-
dictable mild stress (CUMS), chronic restraint stress, 
chronic inescapable shock, and chronic psychosocial 
stress impair LTP in hippocampal DG [194–196], CA3-
CA1 [194, 197–199], and temporoammonic (TA)-CA1 
regions [200], and reduce the total or surface levels of 
AMPARs [201, 202], the total PSD-95 protein levels 
[201, 203], and LTP in the PFC [189, 204–206]. Further-
more, chronic mild naturalistic stress and CUMS facili-
tate LTD in the CA1 region of the hippocampus [207, 
208].

Taken together, these findings strongly suggest that 
deficits in synaptic plasticity are a consistent feature 
of models of stress and depression, likely mediated by 
impairments in AMPAR trafficking.

Dysregulation of AMPAR trafficking in rodent models 
of stress and depression
Consistent with the idea that deficits in AMPAR traf-
ficking might underlie deficits in synaptic plasticity and 
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cognition in stress and depression models, numerous 
studies have shown that various mechanistically different 
antidepressants impact AMPAR trafficking and function.

Conventional antidepressants
In non-stressed rats, chronic treatment with SSRI par-
oxetine and the TCA desipramine produces a time- and 
dose-dependent increase in AMPARs in the membrane 
without affecting total protein levels [209], suggesting a 
drug-induced redistribution of AMPARs via trafficking. 
Similarly, chronic treatment with SSRI fluoxetine upregu-
lates BDNF protein levels in the hippocampus and cor-
tex [210], increases the GluA2 subunit of AMPARs in the 
synaptic membrane of the retrosplenial granular b cortex 
[211], and elevates the GluA2 and GluA4 subunits in PFC 
[212]. Additionally, it increases S845-GluA1, another 
critical phosphorylation event for the synaptic traffick-
ing of AMPARs, in the hippocampus, PFC and striatum 
[213].

In line with these findings, the norepinephrine reup-
take inhibitor reboxetine elevates BDNF protein levels in 
the hippocampus and cortex [210] and increases GluA1 
and GluA3 protein levels in the PFC [212]. The tetra-
cyclic antidepressant maprotiline increases GluA1 and 
GluA2/A3 subunit expression in the hippocampus [214]. 
The TCA imipramine enhances the synaptic expression 
of GluA1 and S845-GluA1 without changing the total 
levels of GluA1 in non-stressed rats or mice [215]. Con-
sistently, bath application of the TCA imipramine, or the 
SSRI fluoxetine or citalopram, potentiates field excita-
tory postsynaptic potentials at TA-CA1 synapses in non-
stressed rat hippocampal brain slices [216].

Similar effects have also been observed in stressed 
rodent models. Chronic fluoxetine treatment rescues the 
chronic unpredictable stress (CUS)-induced reduction of 
GluA1 gene (Gria1) expression in the hippocampal CA1 
and DG regions, and restores GluA1 protein expression 
and AMPAR-mediated synaptic transmission in the hip-
pocampal CA1 region [217]. Additionally, it partially res-
cues the AIS-induced impairment in PFC LTP [188, 191]. 
Chronic treatment with the SSRI fluvoxamine prevents 
the CMS-induced facilitation of LTD in the hippocampus 
[208]. Furthermore, chronic treatment with desipramine 
and the SSRI escitalopram prevents the CUS-induced 
deficit in extradimensional set-shifting [218].

Collectively, these lines of evidence suggest that regu-
lation of AMPAR trafficking and synaptic plasticity cer-
tainly represents a viable downstream target for the 
conventional antidepressants. These drugs may either 
first target the monoamine systems and subsequently 
modulate AMPAR signaling, or directly target AMPAR 
signaling.

NMDAR antagonists
Considerable interest in the glutamatergic system has 
arisen following the empirical finding that a single dose of 
ketamine, originally a non-competitive NMDAR antago-
nist used primarily as an anesthetic, induces rapid (within 
2  h), pronounced, and relatively long-lasting (7  days) 
antidepressant effects, even in patients with treatment-
resistant depression [219, 220]. Notably, accumulating 
evidence indicates that AMPARs are key downstream 
targets of ketamine [167, 168, 173]. Acute ketamine 
administration elevates the protein level of BDNF, as well 
as surface levels of GluA1 and GluA2, and consequently 
increases AMPAR-mediated synaptic transmission in the 
CA3 and CA1 hippocampal regions of non-stressed rats 
or mice [221–223]. Similar effects have been observed 
in animal models of depression, where a single dose of 
ketamine completely reverses CUS-induced decreases 
in the protein levels of synaptic GluA1, PSD-95, and 
synapsin I, as well as spine density and frequency and 
amplitude of AMPAR-mediated EPSC in the PFC in a 
mTOR-dependent manner [201, 224]. Ketamine also 
ameliorates the social defeat stress-induced decreases 
in BDNF, GluA1, and PSD-95 in the PFC, CA3, and DG 
regions of the hippocampus in mice [203]. Ketamine-
induced antidepressant behavioral responses are blocked 
in BDNF knock-out (KO) mice, suggesting a critical role 
of BDNF in mediating its effects [221]. The synaptic-
potentiation and antidepressant effects of ketamine are 
reversed by DNQX or NBQX, antagonists of AMPARs 
and kainate receptors regardless of subunit composition 
[223, 225, 226], but not by NASPM, a channel blocker of 
GluA2-lacking AMPARs [223]. Moreover, the synaptic-
potentiation and antidepressant-like effects of ketamine 
in the forced swim test or the novelty-suppressed feed-
ing paradigm are abolished in GluA2 KO mice, suggest-
ing that the GluA2 subunit of AMPARs plays a key role 
in mediating the antidepressant effects of ketamine [223]. 
Consistently, (2R,6R)-HNK, a major metabolite of keta-
mine, exerts antidepressant actions as well as potentia-
tion of AMPAR-mediated currents and upregulation of 
AMPARs in hippocampal synapses, which are reversed 
by the AMPAR antagonist NBQX [227].

Similar to AD and HD, extrasynaptic GluN2B-con-
taining NMDARs may play a major role in mediating 
the effects of stress [228]. Selective GluN2B antagonists 
and non-selective NMDAR antagonists, as well as allos-
teric modulators of NMDA channels such as GLYX-13, 
produce antidepressant responses in rodent models and 
in humans [201, 224, 225, 229]. The channel blocker 
memantine reverses LTP deficits in the PFC and 
improves CUS-induced impairment in prefrontal cortical 
synaptic plasticity and reversal learning, although it may 
impair spatial memory [206, 230, 231]. NMDAR channel 
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blocker MK-801 (dizocilpine), and Ro25-6981, a GluN2B 
selective antagonist, exert antidepressant-like  effects, 
possibly by elevating BDNF levels [221].

AMPAkines
AMPAR positive allosteric modulators, or AMPAkines, 
which potentiate AMPAR function by binding at the 
ligand-binding domain dimer-interface on the AMPAR 
complex, have also shown antidepressant effects in ani-
mal models as well as in patients. Preclinically, AMPA-
kines such as LY451646, LY392098, Tulrampator, 
piracetam, aniracetam, CX516 and CX691 exhibited anti-
depressant-like effects in animals models [174, 232–236]. 
As expected, the antidepressant effects of the AMPAkine 
LY392098 in the forced swim test were blocked by the 
non-competitive AMPAR antagonist LY300168 [233]. 
Interestingly, AMPAkines also induce BDNF expression 
[237] which is associated with antidepressant action of 
almost all classes of antidepressants. BDNF expression 
is increased in the hippocampus by different classes of 
antidepressants [238]. Furthermore, deletion of BDNF in 
the hippocampus attenuates the antidepressant behavio-
ral responses [239–241] and intraventricular or intrahip-
pocampal infusion of BDNF is sufficient to induce rapid, 
sustained anti-depressant-like effects [242, 243].

The fact that a range of mechanistically different anti-
depressants impact AMPAR trafficking and function sup-
ports the notion that dysregulation in AMPAR trafficking 
may play a central role in the pathogenesis and treatment 
of stress and depression.

Dysregulation of AMPAR diffusional trapping in rodent 
models of stress and depression
The first evidence for a role of AMPAR diffusion in 
stress and depression arose from in  vitro studies show-
ing that the stress hormone corticosterone significantly 
impacts the diffusion of AMPAR in cultured hippocam-
pal neurons [178]. Acute treatment with corticosterone 
for 5–10  min rapidly increases GluA2-AMPAR lateral 
diffusion via the mineralocorticoid receptor, facilitat-
ing their synaptic recruitment in response to a chemical 
LTP stimulus. Over several hours, corticosterone slowly 
increases surface GluA2-AMPAR diffusion and synaptic 
content via the glucocorticoid receptor, occluding further 
synaptic AMPAR potentiation [18, 178, 244, 245]. These 
findings suggest that dysregulation of AMPAR diffusional 
trapping may underlie impairments in synaptic plastic-
ity and cognition observed in animal models of stress 
and depression. The therapeutic potential of targeting 
AMPAR diffusional trapping in depression has been 
demonstrated in experiments using the atypical antide-
pressant Tianeptine [18].

Tianeptine (S 1574, [3-chloro-6-methyl-5,5-dioxo-
6,11-dihydro-(c,f )-dibenzo-(1,2-thiazepine)-11-yl) 
amino]-7 heptanoic acid, sodium salt) is a clinically used 
atypical antidepressant under the brand name Stablon 
or Coaxil. Structurally similar to tricyclic antidepres-
sants, tianeptine is a serotonin reuptake enhancer that 
decreases the extracellular levels of serotonin [170, 246]. 
We previously demonstrated that tianeptine rapidly 
reduces AMPAR lateral diffusion under basal conditions 
and in corticosterone-treated hippocampal neurons [18]. 
It also reverses corticosterone- and AIS-induced impair-
ments in hippocampal and PFC LTP [18, 182, 188, 190, 
191] and prevents stress-induced memory impairment 
[247, 248]. Mechanistically, tianeptine promotes the 
interaction between stargazin and PSD-95 in hippocam-
pal neurons via CaMKII phosphorylation of stargazin. 
The CaMKII inhibitor KN-93 or the expression of star-
gazin ΔC, which lacks the last four C-terminal amino 
acids corresponding to the PDZ binding site of PSD-95, 
prevents the tianeptine-induced surface AMPAR immo-
bilization [18]. In addition to its role in the diffusional 
trapping of AMPARs, tianeptine rapidly augments the 
phosphorylation of the GluA1 subunit at S831 and S845 
[190, 249, 250], which are involved in the surface expres-
sion and synaptic retention of AMPARs. Consistent with 
these findings, tianeptine potentiates AMPAR-mediated 
synaptic transmission by activating CaMKII and PKA 
via the MAPK pathways p38, MEK1/2, and JNK [250]. 
Notably, the antidepressant effects of tianeptine in forced 
swim test are blocked by AMPAR antagonist NBQX 
[251], further corroborating that the ability to modify 
AMPAR-mediated synaptic plasticity is a crucial feature 
of clinically effective antidepressants [170].

Taken together, the discovery that tianeptine promotes 
the diffusional trapping of AMPAR supports the concept 
that dysregulation of AMPAR diffusional trapping may 
underlie deficits in synaptic plasticity and cognition in 
models of stress and depression.

Conclusions
The convergence of HD, AD, and depression on the dys-
regulation of AMPAR diffusional trapping highlights 
a unified pathological mechanism likely contributing 
to early-onset psychiatric disturbances and cognitive 
impairments in these conditions. Identifying this mecha-
nistic node may open a new avenue for early therapeutic 
intervention, which could be particularly advantageous 
for complex conditions like neurodegenerative and neu-
ropsychiatric disorders, where the exact pathogenesis 
remains largely unknown.

Targeting convergent mechanisms in disease treat-
ment is often more efficient and associated with fewer 



Page 11 of 19Choquet et al. Translational Neurodegeneration  (2025) 14:8 

side effects than targeting individual pathways because 
it addresses a common downstream process affecting 
multiple disease pathways simultaneously. This approach 
simplifies therapeutic intervention and development, as 
a single treatment can modulate a central mechanism 
impacting various pathways, leading to broader thera-
peutic benefits. Additionally, focusing on a convergent 
mechanism reduces the risk of off-target effects and 
toxicity, as it is more likely to influence specific aspects 
of disease pathology without disrupting overall cellular 
balance.

As proof of principle, we found that, in addition to its 
beneficial effects on models of stress and depression, 
the atypical antidepressant tianeptine rescues synaptic 
plasticity and cognitive deficits in a number of comple-
mentary HD animal models by promoting the diffusion 
trapping of AMPARs in a BDNF-TrkB-dependent man-
ner [64]. These experiments suggest that, beyond its 
known antidepressant effect, tianeptine may be repur-
posed to provide cognitive benefits in HD and AD. One 
of the main advantages of targeting the diffusional trap-
ping of AMPARs—the final step of the AMPAR cellular 
journey to the synapses—is that it is likely associated 
with minimal side effects. Given that AMPARs mediate 
the majority of fast synaptic transmission in the brain, 
efforts to directly regulate channel function (e.g., with 
ampakines) have been associated with intolerable toxic-
ity levels [167]. Similarly, although strategies targeting 
extrasynaptic NMDAR activity with low-dose meman-
tine have shown benefits in several neurodegeneration 
models, including AD and HD [106], clinical studies 
using NMDAR channel blockers for neurological condi-
tions have been disappointing, largely due to the essential 
physiological role of NMDARs [252].

We suggest that specifically targeting the surface redis-
tribution of AMPARs already present at the plasma 
membrane via diffusional trapping of AMPARs—without 
impacting the total number of surface AMPARs—may 
effectively restore cognitive function in these disor-
ders without the aforementioned side effects. Ideally, 
therapeutics should promote the diffusional trapping 
of AMPAR by directly interacting with the receptor 
itself—without affecting its channel properties—or with 
components of its diffusional trapping machinery, such 
as PSD-95. A recent  exciting study reported the design 
and characterization of a “synaptic organizer”—a pep-
tide that bridges presynaptic neurexins to postsynaptic 
AMPARs [253], presumably stabilizing synaptic AMPAR 
via diffusional trapping [254]. Moreover, a recent study 
developed a 21-amino-acid peptide that interferes 
with the interaction between TARP and the N-lobe of 
the activity-regulated cytoskeleton-associated protein 
(Arc/Arg3.1), which in turn strengthens the interaction 

between PSD-95 and TARP, enhancing the diffusional 
trapping of AMPARs. Remarkably, a 7-day infusion of 
this peptide effectively prevented the forgetting of fear 
memory induced by social isolation [255]. Supporting the 
idea that stabilizing synaptic AMPAR could be benefi-
cial across various neurodegenerative and neuropsychi-
atric disorders, this multivalent AMPAR binder restores 
synaptic and cognitive function in AD models, as well as 
motor coordination and locomotion in mouse models for 
cerebellar ataxia and spinal cord injuries [253]. Similarly, 
we previously demonstrated that artificially immobiliz-
ing AMPARs using an antibody-crosslinking approach 
rescues synaptic loss in an in-vitro AD model [63]. These 
studies underscore the potential therapeutic value of 
directly and specifically stabilizing synaptic AMPARs via 
their diffusional trapping.

Moreover, promoting AMPAR exocytosis could 
increase the number of surface AMPARs, potentially 
enhancing AMPAR diffusional trapping without altering 
their total number or channel properties. Since AMPARs 
are exocytosed to extrasynaptic sites, this strategy would 
expand the pool of mobile extrasynaptic AMPARs avail-
able for synaptic recruitment through diffusional trap-
ping [118]. This aligns with numerous studies showing 
that activation of β-adrenergic receptors—either through 
noradrenaline or pharmacological agents like isoproter-
enol—not only increases the extrasynaptic AMPAR pool 
but also enhances LTP and memory [256–259]. Similarly, 
targeting signaling pathways that promote AMPAR exo-
cytosis, such as PKA, ERK, and PI3K/Akt pathways, may 
offer therapeutic benefits in neurodegenerative disorders, 
including AD and HD [102, 260–262].

An important open question in the field is whether 
brain disorders differentially affect AMPARs based on 
their subunit composition. For instance, we have dem-
onstrated that the diffusional trapping and synaptic 
anchoring of endogenous GluA2-containing AMPARs—
likely comprising GluA1/GluA2 and GluA2/GluA3 het-
eromers—are disrupted in AD models [63]. In contrast, 
oAβ has been shown to promote the synaptic recruit-
ment, rather than the elimination, of GluA1 homomeric 
calcium-permeable AMPARs, contributing to synaptic 
dysfunction [263, 264]. Furthermore, Aβ-induced den-
dritic spine loss has been found to require  Ca2+ influx 
through calcium-permeable AMPARs [265]. Interest-
ingly, the endocytic adaptor protein CALM (clathrin 
assembly lymphoid myeloid leukemia protein) selectively 
targets ubiquitinated GluA1-homomeric calcium-perme-
able AMPARs for endocytosis via a clathrin-independent 
mechanism [266]. These findings emphasize the complex 
interplay between AMPAR subunit composition and 
the pathological mechanisms underlying brain disor-
ders. A deeper understanding of how these processes are 
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selectively regulated could pave the way for novel thera-
peutic approaches to restore synaptic function.

Another key question in the field is the potential influ-
ence of genetic mutations or common variations within 
the human population on the diffusional trapping of 
AMPARs and their role in increasing susceptibility to 
neurological disorders. For example, it would be inter-
esting to investigate whether the single-nucleotide poly-
morphism (SNP) in the BDNF gene (Val66Met), which 
is known to negatively impact learning and memory 
and be associated with stress-related disorders and 
AD [267–269], also affects the diffusional trapping of 
AMPARs. Similarly, it remains to be determined whether 
genetic variations in AMPARs or components of the dif-
fusional trapping machinery—such as stargazin, PSD-
95, and CaMKII—contribute to disease susceptibility. 
Notably, in this context, recent studies have shown that 
the V143L stargazin mutation, linked to intellectual dis-
ability, increases the surface mobility of stargazin. This is 
evidenced by enhanced mean square displacement and 
diffusion rates, as well as decreased synaptic residence 
time, likely resulting from impaired interactions with 
AMPA receptors and reduced phosphorylation [270].

It is noteworthy that neither complete destabilization 
nor complete immobilization of AMPAR surface diffu-
sion is beneficial. Maintaining a physiological dynamic 
equilibrium is key to an effective treatment. Normal lat-
eral diffusion allows receptor exchange between synaptic 
and extrasynaptic compartments, reversible binding to 
postsynaptic anchoring slots, and accumulation at syn-
aptic sites or endocytic zones [271]. Aberrant destabili-
zation of AMPARs observed in HD, AD and depression 
models results in impairments in synaptic plasticity and 
cognition [63, 64]. Conversely, abnormal immobilization 
of AMPAR, such as crosslinking AMPARs in naïve neu-
rons [17], also blocks synaptic plasticity and cognition by 
preventing the normal diffusion of extrasynaptic AMPAR 
to synapses during LTP.

In conclusion, we propose that AMPAR diffusional 
trapping is a converging point in HD, AD, and stress-
related disorders like depression and may serve as a 
promising early therapeutic target in diseases associated 
with memory deficits.
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