
Drath et al. Translational Neurodegeneration           (2025) 14:23  
https://doi.org/10.1186/s40035-025-00481-w

REVIEW Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Translational
Neurodegeneration

Nose‑to‑brain drug delivery: from bench 
to bedside
Isabell Drath1,2, Franziska Richter1,2* and Malte Feja1,2*    

Abstract 

There is increasing interest in nose-to-brain delivery as an innovative drug delivery strategy for neurodegenerative 
disorders such as Parkinson’s or Alzheimer’s disease. The unique anatomy of the nose-brain interface facilitates direct 
drug transport via the olfactory and trigeminal pathways to the brain, bypassing the blood–brain barrier. Different 
administration techniques as well as advanced drug formulations like targeted nanoparticles and thermoresponsive 
systems have been explored to improve the delivery efficiency and the therapeutic efficacy. This review provides 
an up-to-date perspective on this fast-developing field, and discusses different studies on safety and pharmacoki-
netic properties. A thorough evaluation of preclinical and clinical studies reveals both promises and challenges of this 
delivery method, highlighting approved drugs for the treatment of epilepsy and migraine that successfully utilize 
intranasal routes. The current landscape of research on nose-to-brain delivery is critically discussed, and a rationale 
is provided for ongoing research to optimize therapeutic strategies.
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Background
The blood–brain barrier poses a challenge for the treat-
ment of central nervous system (CNS) disorders by pre-
venting most therapeutic agents from reaching the brain 
after oral or parenteral administration. Recently, intrana-
sal administration of drugs has gained increasing inter-
est as it can bypass the blood–brain barrier. This route is 
suitable for daily application and allows therapeutic mol-
ecules to be transported directly into the brain, bypassing 
the blood–brain barrier and increasing drug concentra-
tions in the CNS [1]. Although the exact mechanisms 
of transport from the nose to the brain are not fully 

understood, preclinical and clinical studies have shown 
that the nose-to-brain drug delivery is applicable in both 
animals and humans. Here we summarize the current 
state of knowledge regarding mechanisms of nose-to-
brain drug delivery including clinical applications.

Anatomy and histology of the nose‑brain interface
The nasal cavity of humans and other mammals includ-
ing mice and rats is separated by the nasal septum into 
two parts. The two nostrils build the entrance to the nasal 
vestibule which merges into the nasal cavity. Within the 
nasal cavity there are three nasal conches, which form 
the nasal meatuses [2]. The whole nasal cavity except the 
nasal vestibule is coated with nasal mucosa which can be 
divided into the respiratory and the olfactory regions.

The respiratory region, which represents the major 
part of the nasal cavity, is coated with respiratory ciliated 
epithelium and serves primarily as a protective surface. 
It humidifies and warms the inhaled air and is able to 
remove particles and allergens [3]. Innervation of the res-
piratory mucosa is provided by branches of the trigemi-
nal nerve [4].
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The significantly smaller olfactory region is located 
at the roof of the dorsal meatus and is characterized by 
olfactory mucosa. Fine nerve fibers, the fila olfactoria, 
innervate the olfactory mucosa. They originate from 
the olfactory nerve, which innervates from the olfactory 
bulb through the lamina cribrosa to the olfactory region 
(Fig. 1a). Thus, the olfactory nerve displays a direct con-
nection between the brain and the nose, which could 
mediate the higher efficiency of nose-to-brain delivery 
via the olfactory mucosa compared to the respiratory 
mucosa [5]. In addition to the sensory innervation by 
the olfactory nerve, the nose is sensitively innervated by 
branches of the trigeminal nerve. The trigeminal nerve 
originates at the pons, swells to form the ganglion trigem-
inale and divides afterwards into three main branches: 
nervus ophthalmicus, nervus maxillaris and nervus man-
dibularis (Fig.  1b). The ophthalmic and the maxillary 
nerves are responsible for the innervation of the nasal 
mucosa [6]. Moreover, the perineural space surround-
ing the cranial nerves is connected to the subarachnoid 
space and thereby directly connected to the cerebrospinal 
fluid (CSF) [7–9]. One pathway of CSF drainage is along 
the cranial nerves into the nasal epithelium [7, 10]. Taken 
together, the nose is directly connected to the brain and 
the CSF via the trigeminal and the olfactory nerves.

Another distinct characteristic of the two regions is 
the capillary density, which is about 5-times higher in 
the respiratory region than in the olfactory region [11]. 
High vascular density efficiently eliminates drugs from 
the tissue; therefore, low vascular density of the olfactory 
region correlates with higher brain delivery efficiency 
[11]. Furthermore, it is important to note that the olfac-
tory epithelium in rats and mice is about 40%–50% of the 
total nasal surface; however, in humans the percentage is 
less than 10% [12–14]. This anatomical difference has a 
significant impact on the translation of preclinical studies 
from laboratory animals to humans, particularly for dose 
finding and the investigation of nasal delivery devices.

The olfactory mucosa consists mainly of four different 
cell types: ciliated olfactory receptors, supporting cells, 
basal cells and microvillar cells [15]. Ciliated olfactory 
cells are bipolar neurons, with one process that termi-
nates in the olfactory bulb and another superficial pro-
cess ending in a ciliated apical extension called olfactory 
vesicle [16]. Supporting cells, also called sustentacular 
cells, are non-ciliated epithelial cells, which function as 
metabolic support and are able to introduce substances 
into the surface mucus as well as to remove substances 
from it [17]. Basal cells are stem cells which do not reach 
the surface and are able to differentiate into ciliated olfac-
tory receptors or supporting cells to replace degener-
ated cells [17]. Microvillar cells serve as bipolar sensory 
neurons [18]. The olfactory mucosa lies above the lamina 

propria which consists of blood and lymph vessels, Bow-
man’s glands, nerve bundles and connective tissue [15].

The nasal blood supply is mainly provided by the exter-
nal and the internal carotid arteries. The nasal walls are 
supplied by the sphenopalatine artery which comes from 
the maxillary artery, a branch of the external carotid 
artery. The anterior part of the nose is supplied with 
blood by the anterior and posterior ethmoidal arter-
ies. These are branches of the ophthalmic artery, which 
originates from the internal carotid artery. Additionally, 
branches from the facial artery supply the vestibule and 
the anterior portion of the nose [19].

The human nose has several functions regarding 
breathing, which include air conditioning, heating of the 
inhaled air as well as protective mechanisms like muco-
ciliary activity to remove particles and pathogens. The 
human average mucociliary transport rate is about 6 mm 
per minute [20] and especially particles over 15  μm in 
size are removed [19]. This mucociliary clearance mecha-
nism reduces the retention time of drugs in the nose, 
which needs to be taken into account when developing 
intranasal drugs. Moreover, the human nose serves as a 
resonating body for speaking and is critical for the olfac-
tory sense.

Nose‑to‑brain transport routes
Nose-to-brain drug delivery is a promising avenue to cir-
cumvent the blood–brain barrier. Indications for a direct 
connection between the nose and the CNS were discov-
ered at the beginning of the last century [8], as research-
ers were able to show that substances injected into the 
subarachnoid space can reach the nasal mucosa [21]. 
Numorous studies have substantiated this direct commu-
nication. However, the nose-to-brain pathway is still not 
completely understood and there appear to be different 
routes for drugs to reach the brain and distribute across 
its parenchyma (Fig.  1). Currently, two different routes 
of transport to the brain are proposed: the olfactory and 
the trigeminal routes. This concept is based on studies 
detecting high amounts of drugs in the lateral olfactory 
tract, olfactory bulb and trigeminal region after intrana-
sal application [22–24].

First evidence for the olfactory route emerged almost 
100  years ago when researchers suspected that viruses 
travel from the olfactory epithelium of the nose along 
the olfactory nerve to the brain [25]. This route of virus 
spread was brought back into focus of research by the 
COVID-19 pandemic [26]. Furthermore, latest research 
shows pathology in the olfactory bulbs after intrana-
sal administration of alpha-synuclein preformed fibrils, 
which are thought to contribute to neurodegeneration 
in PD, underlining the connection between the nose and 
the olfactory part of the brain [27]. The olfactory route is 
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Fig. 1  a General anatomy of the nose-to-brain interface and potential transport pathways for nose-to-brain delivery. The olfactory epithelium 
is composed of bipolar olfactory neurons, sustentacular cells, Bowman’s glands, basal cells and its underlying lamina propria, which contains 
blood and lymph vessels. Axonal processes of olfactory neurons are arranged in bundles known as the fila olfactoria, which traverse the cribriform 
plate and reach the olfactory bulb. Potential pathways for drug delivery from the olfactory mucosa to the brain are illustrated in dark blue. 
➀ Intracellular pathway: drugs are transported within olfactory neurons via axonal transport and endocytosis. ➁ Extra/paracellular transport 
along cranial nerves: drugs are transported within the perineural space, either to the cerebrospinal fluid in the subarachnoid space, or to the 
lamina propria, and subsequently to the blood or lymph vessels. ➂ Transcellular transport: drugs are transported through cells to the lamina proria 
with further transport to lymphatic vessels that are connected with the cervical lymph nodes or to blood vessels following entry to the systemic 
circulation. b Innervation of the nasal region by the olfactory nerve and branches of the trigeminal nerve. The olfactory nerve bundles, originating 
from the olfactory bulb, traverse the cribriform plate and provide innervation to the olfactory region of the nasal mucosa. The trigeminal nerve 
leaves the brainstem at the level of the pons and divides after the trigeminal ganglion into its three main divisions: V1, ophthalmic nerve; V2, 
maxillary nerve; V3, mandibular nerve. Only V1 and V2 send branches to the nasal epithelium, thereby innervating the respiratory mucosa and thus 
participating in the process of nose-to-brain delivery
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subdivided into two pathways: (1) via the olfactory nerve 
to the olfactory bulb with subsequent parenchymal dis-
tribution to different brain areas and (2) distribution via 
the CSF followed by entrance into the brain parenchyma 
[28].

Early studies administering wheat germ agglutinin-
horseradish peroxidase intranasally found high concen-
trations in the olfactory nerve and the glomerular layer 
of the olfactory bulb [29, 30]. Intranasally administered 
labeled siRNA distributed along the olfactory pathway 
to the brain and was detected within the olfactory epi-
thelium, the olfactory nerve as well as in the glomerular 
and mitral cell layer of the olfactory bulb [31]. In detail, 
substances enter olfactory dendrites and are transported 
via the intracellular pathway across olfactory neurons 
into the fila olfactoria [32], subsequently reaching the 
olfactory bulbs by endocytosis and axonal transport 
[29, 33]. The axonal transport velocity has been shown 
to be at maximum 130  mm per day, thus it would take 
a minimum of 45 min for substances to reach the brain 
of a mouse after intranasal application [34]. Given that 
several membrane barriers need to be crossed, transcel-
lular transport is generally expected to require more time 
compared to extracellular transport.

By measuring drug concentrations in the CSF after 
intranasal application, previous studies confirmed the 
second branch of the olfactory route: a direct pathway 
from the nose to the CSF [35–37]. It was previously 
shown that substances injected into the CSF would drain 
not only through the arachnoid villi, but also along the 
cranial nerves [38, 39]. This pathway is bidirectional [8], 
supporting the assumption of a direct pathway from the 
nose to the CSF. Substances are most likely transported 
extracellularly via olfactory lymphatic, perivascular and 
perineural spaces to the CSF [40]. This route is assumed 
to be a direct transport, as model predictions of the time 
required for different transport pathways to reach the 
olfactory bulb suggest that only convective bulk flow 
processes are fast enough to account for experimentally 
observed data [14]. A pharmacokinetic study showed that 
the maximum concentration in the CSF can be reached 
only 5  min after intranasal phenytoin application; such 
rapid transport favours a direct route from the nose to 
the CSF [41].

The trigeminal route includes transport along differ-
ent branches of the trigeminal nerve that innervate the 
nasal respiratory mucosa: the ethmoidal nerve originat-
ing from the ophthalmic nerve, as well as the posterior 
nasal branches and the nasopalatinal nerve originat-
ing from the maxillary nerve [42, 43]. They are project-
ing to the trigeminal ganglion and to trigeminal nuclei 
in the brain stem. Furthermore, there is evidence that 
some trigeminal ganglion cells with sensory endings in 

the nasal epithelium have direct branches reaching into 
the olfactory bulb [44, 45]. Studies have shown that sub-
stances can reach the trigeminal nerve after intranasal 
application [46]. More precisely, a GLP-2 derivative was 
detected in the trigeminal principal sensory nucleus (Pr5) 
in the pons three minutes after intranasal administration, 
accounting for a rapid intracellular axonal transport [47]. 
In another study, insulin was shown to reach the perineu-
ral space of the trigeminal nerve, providing evidence that 
extracellular transport processes are also involved in the 
trigeminal pathway [48].

As any transport of drugs across barriers, the nose-
to-brain delivery route is dependent on particle size and 
formulation of the substance administered. However, 
small size does not necessarily improve neuronal trans-
port. For instance, 520-nm Poly(lactic-co-glycolic acid) 
nanoparticles can be detected in neuronal bundles after 
intranasal administration, indicating their transcellular 
neuronal transport, whereas 80-nm and 175-nm particles 
were only detected in other cell types, albeit with a more 
rapid distribution [49]. Moreover, neuropeptides like 
GLP-1 and GLP-2 derivatives with functional sequences 
were shown to be rapidly transported through trigeminal 
axons after intranasal application in mice [47, 50]. Others 
reported that the trigeminal pathway serves as the domi-
nant route for intact nanoparticles, whereas the olfactory 
pathway is more likely to deliver substances which are 
already released from nanoparticles [51].

Of note, substances transported predominantly via the 
olfactory route rapidly appear in different brain areas, 
suggesting extracellular transport to reach the brain and 
the CSF [52]. In contrast, substances transported mainly 
via the trigeminal pathway take longer to reach the brain, 
indicating that they are more likely to be transported 
transcellularly [47]. Moreover, the trigeminal nerve is 
longer than the olfactory nerve, leading to longer trans-
port duration.

Techniques for intranasal administration
An optimal technique for intranasal application is crucial 
for successful delivery of drugs to the brain. Several dif-
ferent techniques and devices have been developed for 
nose-to-brain delivery, including ultrasound-mediated 
methods [53], electric guidance of charged particles [54] 
and catheter-based administration [55]. In preclinical 
studies using small laboratory animals, micropipettes are 
frequently used to place small droplets at the entrance 
of the nostrils to be breathed in by the animal. In order 
to define factors that impact delivery efficacy, influences 
of animal position, body weight and age were investi-
gated [56]. Interestingly, older animals with higher body 
weights require increased intranasal dosages to reach 
the same drug concentration in the brain as in young 
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animals. Furthermore, placement of animals in a supine 
or an upright position has no effect on the delivery effi-
ciency [56]. To further enhance delivery efficiency and 
precision, catheters are applied to specifically target the 
olfactory region of the nasal cavity in mice and rats [55, 
57]. The catheter reduces untargeted distribution to the 
periphery compared with the standard pipette-based 
method. However, the procedure is more invasive and 
requires anesthesia.

Another method to enhance delivery efficiency is the 
use of external magnetic fields to guide charged particles 
to the olfactory region. Electric guidance reduces particle 
loss in the anterior nose and increases particle deposition 
in the olfactory region [54]. With the use of a magnetic 
field and certain improvements in particle diameter and 
injection angle, the olfactory deposition in an in silico 
study of the human nose was 65-times higher compared 
to standard injections without magnetic fields [58]. This 
indicates that improvement of application methodology 
and the use of external magnetic fields can enhance nose-
to-brain delivery.

One disadvantage of the above described techniques 
for nose-to-brain drug delivery is that drugs are delivered 
to the entire brain unspecifically, whereas most CNS dis-
eases primarily affect certain brain regions or cell types. 
Thus, concentrated drug application to the target cells 
could enhance efficacy and reduce off-target effects. The 
combination of intranasal delivery and focused ultra-
sound with microbubbles has been suggested as a tar-
geted strategy [53, 59]; however, this method can be quite 
disruptive for brain tissue and its use may be limited to 
severe conditions such as certain brain tumors. In addi-
tion to brain region targeting, it is also possible to use 
selective cell-targeting nanoparticles to deliver drugs to 
disease-related cells. For example, in glioblastoma ther-
apy, it is of great importance to target cancer cells while 
reducing exposure of healthy cells. Co-layering nanopar-
ticles with poly-l-glutamate and hyaluronate increases 
glioblastoma targeting in tumor-bearing mice after 
intracranial injection [60]. Targeting dopaminergic neu-
rons could be promising in the field of Parkinson’s disease 
(PD), whereas targeting amyloid plaques may be an inter-
esting therapeutic approach in Alzheimer’s disease (AD) 
[61]. Modified silica nanoparticles with dopamine ligands 
that bind to neuronal dopamine receptors showed supe-
rior delivery of glutathione to SH-SY5Y cells compared 
to unmodified nanoparticles, as well as improved cyto-
protective and anti-apoptotic effects in  vitro [62]. Fur-
thermore, a study has demonstrated neuron-selective 
delivery of microRNA using a D3-peptide-conjugated 
nanopolymer injected into the tail vein in an AD mouse 
model [63]. Cationic siRNA complexes have also been 
shown to precisely target amyloid plaques in the brains of 

AD mice after intravenous injection [64]. Whether such 
selective cell-targeting can be combined with nose-to-
brain delivery remains to be determined.

Another challenge for nose-to-brain drug delivery 
is the development of appropriate delivery devices, 
since standard devices are optimized for local effects 
and therefore deliver only a small amount of drug to 
the olfactory region [65]. For instance, traditional spray 
pumps deliver only around 5% of the drug to the upper 
nasal space where the olfactory mucosa is located [66]. 
The development of intranasal drugs with appropri-
ate delivery devices is limited by the fact that their use 
in preclinical studies cannot be accomplished with the 
same delivery devices as in humans because of the differ-
ent size and anatomy of laboratory animals. Mathemati-
cal models and human nasal replica casts are used to 
overcome this species barrier; however, successfull deliv-
ery in clinical studies remains challenging [67] (Fig.  2). 
For instance, four different nasal spray pumps and four 
nasal nebulizers failed to deliver a therapeutically signifi-
cant amount of certain particles to the olfactory region 
[65]. Therefore, it is argued that nasal replica casts most 
times do not imitate a human nose sufficiently to draw 
valid conclusions for a regulatory drug deposition study 
[68]. Despite these challenges, there are several differ-
ent nasal delivery devices on the market, some of which 
are specifically designed for nose-to-brain delivery. One 
such device uses a propellant-powered delivery technol-
ogy which claims to reduce the amount of drugs that get 
trapped in the nasal vestibule, thereby delivering more 
medication to the upper part of the nose compared to 
traditional nasal sprays [69]. This device has been used in 
clinical studies to deliver dihydroergotamine mesylate for 
acute treatment of migraine attacks and has shown rapid 
pain relief as well as good tolerability [70, 71].

Further developments in the field are bidirectional 
breath-powered delivery devices [72], one of which 
has already been approved for migraine treatment with 
sumatriptan nasal powder. The device consists of an 
exhalation mouthpiece connected to the nosepiece by the 
device body. During exhalation the soft palate closes and 
seperates the nasal from the oral cavity, which prevents 
unintentional delivery to the oropharynx or lungs. The 
breath-powered delivery devices deliver more drugs to 
the target site with a better pharmacokinetic profile than 
traditional nasal sprays [73, 74].

Pharmacokinetics of nose‑to‑brain drug delivery
The goal of pharmacokinetic studies for nose-to-brain 
drug delivery is to develop the optimal drug formula-
tion, determine dosing regimens, and gain understanding 
of drug interactions. Previous pharmacokinetic studies 
have shown that the peak concentrations of substances 
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like clomipramine nanoparticles [75], dantrolene [76] 
or donepezil liposomes [77] in the brains of rodents can 
be reached as early as 20–30 min after intranasal appli-
cation. In contrast, another study measured the highest 
concentration of intranasally administered nanoparticles 
containing fibroblast growth factor after 30 min only in 
the olfactory bulb, while the peak concentration in the 
rest of the rat brain was reached 4  h after application 
[78]. Further studies generated pharmacokinetic profiles 
of intranasal vascular endothelial growth factor in rats 
and intranasal allopregnanolone in mice, which meas-
ured the highest drug concentrations in the trigeminal 
nerve, optic nerve and olfactory bulb followed by the cer-
ebrum and hippocampus [79, 80]. The lowest concentra-
tions in the brain were measured in the cerebellum and 
even lower concentrations in the serum after intranasal 
application of fibroblast growth factor in rats [81]. Due 
to a good vascularization of the nasal mucosa, drugs are 
reaching the systemic circulation. In addition to different 
brain areas, drugs like methotrexate reach even the cer-
vical lymph nodes of rats with peak concentrations one 
hour after intranasal administration [79, 82]. Different 

studies have revealed superiority of the nasal route com-
pared to other administration routes. Intranasal admin-
istration of a hematopoietic growth factor, which has 
limited capacity to cross the blood–brain barrier, is 8–12 
times more effective than subcutaneous application in 
brain and CSF delivery [83]. Furthermore, a recent study 
demonstrated that the brain uptake of human recombi-
nant erythropoietin, curcumin, glucagon-like peptide 
1 and anti-Aβ antibodies given to mice by intranasal 
administration is more than 5 times higher than that by 
intraperitoneal injection [84]. The superior efficiency of 
brain delivery by intranasal administration compared to 
intraperitoneal administration has also been observed for 
a peptide capable of Aβ hydrolysis [85]. Compared to oral 
administration, the nasal route achieved 25-fold higher 
bioavailability of harmine nanocrystals in the brain 
[86]. Moreover, intranasal applications achieved higher, 
longer-lasting brain drug concentrations compared to 
intravenous administration [81, 87]. For instance, the 
area under curve for carmustine concentration in the 
brain after intranasal administration was 14.7 times 
that of intravenous administration [88]. Furthermore, 
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oxytocin, as well as high-molecular-weight substances 
such as cobrotoxin, reach the brain in greater amounts 
when administered intranasally than when administered 
intravenously [89, 90].

Differences in pharmacokinetic profiles are apparent 
between experimental animals and humans. After intra-
nasal administration of insulin lispro in humans as well 
as in dogs, the insulin lispro was detectable in the CSF 
of dogs, while its level in the CSF was below the limit of 
quantification in humans [91]. A computational model 
comparing intranasal delivery patterns between mice and 
humans has been developed for further pharmacokinetic 
studies [92]. The model predicted that nasally adminis-
tered nanomaterials reach the mouse brain at an amount 
of two orders of magnitude compared to that reach-
ing the human brain. This suggests that extrapolation 
of pharmacokinetic studies from laboratory animals to 
humans is of limited validity and should always be done 
with caution.

Drug formulations for nose‑to‑brain delivery
Another key aspect in drug discovery is finding an appro-
priate drug formulation that delivers the drug in a sta-
ble, safe and effective manner (Fig. 2). For nose-to-brain 
administration, drugs can be formulated as powders, 
solutions or gels. Furthermore, biochemical features like 
particle size, pH and charge can be adjusted. By optimiz-
ing the formulation, it is possible to enhance brain uptake 
by more than 10 folds [93].

As stated above, particle size is an important determi-
nant of neuronal uptake. Furthermore, particles of differ-
ent sizes also distribute differently inside the nasal cavity 
after application, which can be addressed by optimizing 
the formulation. In a 3D model of human nose, micro-
particles with a size of 10 μm reach the olfactory region 
at a higher amount than particles with a size of 2 μm [94]. 
The maximum olfactory deposition was observed with 
particles of 8–12 μm in size [95]. In line with these find-
ings, another study reported that inertial 10-μm particles 
and diffusive 1-nm particles have higher olfactory depo-
sition than particles in the size range of 10 nm–2  μm, 
probably due to the inertial force of 10-μm particles and 
the Brownian motion of 1-nm particles [96]. This is con-
sistent with another study that found highest olfactory 
deposition for very small particles with a size of 1–2 nm 
[97].

To avoid nasal irritation and achieve efficient drug 
absorption from nasal mucosa, it is important to adjust 
the pH of the formulation [98]. While the pH level 
of the nasal mucosa is approximately 6.3 [99], stud-
ies have revealed a higher absorption of nasal formula-
tions at pH below 4.79 [100]. Furthermore, to prevent 
irritation and maintain microbial defense, the pH of the 

nasal formulation should be adjusted slightly acidic, as 
lysozymes in nasal secretions effectively destroy bacte-
ria at acidic pH but become inactivated under alkaline 
conditions, leaving tissue vulnerable to infection [101]. 
Considering the advantages of an acidic pH and the 
physiological environment of the nose, intranasal for-
mulations should ideally have a pH level between 4.5 and 
6.5, which is important to avoid adverse effects on the 
mucosa or the ciliary movement [102].

In addition, lipophilicity, molecular weight and surface 
charge of intranasal drugs also affect the delivery effi-
ciency. Increasing lipophilicity is correlated with higher 
drug concentrations in the CSF after intranasal adminis-
tration [103]. Furthermore, decreased molecular weight 
of drugs is associated with higher drug concentrations 
in the CSF [104]. Anionic drug carriers provide a 20% 
increase in drug targeting efficiency compared to cationic 
carriers [105].

Formulations in gel, solution or powder?
One obvious disadvantage of solutions is the short resi-
dence time in the nasal cavity. Gels with higher viscos-
ity remain longer at the mucosa and deliver significantly 
higher brain concentrations of the drug compared to 
solutions [106, 107]. To prolong the residency time 
of gels further and overcome rapid clearance of the 
drug, gels that respond to temperature, ions or pH 
with higher viscosity are being developed [108, 109]. A 
thermo-responsive gel turning viscous at 32  °C not only 
increases drug concentrations in the brain compared to 
a non-thermo-responsive gel, but also sustains the con-
centrations for a longer period of time [110]. Besides, it 
is possible to add mucoadhesive agents to the formula-
tion, which can improve biodistribution by increasing 
the retention time in the brain and the brain/blood ratio 
[111]. In most cases, either solutions or gels were used, 
but a small number of studies also investigated powder 
formulations. Some studies showed superiority of pow-
ders, while others achieved better delivery results using 
other formulations, depending on several factors, such 
as the drug administered. For L-3,4-dihydroxyphenylala-
nine (L-DOPA) administration in PD patients, powders 
appear to act more rapidly than solutions, which may 
be an advantage depending on the treatment goal [112]. 
Two different nasal powders applied with an active deliv-
ery device provide direct transport rates over 60% [113]. 
In contrast, other studies showed superiority of eutectic 
formulations compared to powders [114].

Nanoparticle‑mediated nose‑to‑brain delivery
However, efficient delivery to the brain is challenging, and 
whether using powders, sprays, solutions or gels, vectors 
are commonly used in the treatment of CNS diseases. 
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Notably, in the field of neurodegenerative diseases, 
adeno-associated viruses are the most commonly used 
carriers. However, they have some disadvantages, such 
as limited loading capacity, difficult vector production 
and inflammatory reactions [115–117]. Non-viral vectors 
avoid these disadvantages and are safer for patients. For 
this reason, several studies have explored non-viral carri-
ers, such as liposomes or nanoparticles to enhance brain 
bioavailability of various drugs. It has already been dem-
onstrated that nanoscaled carriers support the transport 
of substances to the brain and at the same time increase 
the stability of active ingredients [118]. Lipid nanoparti-
cles loaded with paclitaxel and miltefosine improved drug 
concentration in the mouse brain by 5 folds compared to 
the free drug [118]. A substantial number of studies have 
indicated superiority of nanoparticle-mediated delivery 
versus plain delivery in terms of pharmacokinetic param-
eters as well as treatment efficacy [119–121]. There is a 
wide range of materials that can be used to create nano-
particles. Materials should be carefully selected depend-
ing on the purpose. Nanoparticles should reach the brain 
and penetrate target cells while being non-toxic to the 
nasal mucosa or the brain. Meanwhile, they may have 
a direct effect on the efficacy of the drug. For instance, 
tyrosine modification on nanoparticles for siRNA thera-
peutics improves the siRNA-mediated knockdown effi-
cacy [122]. Whether nanoparticles have a branched or 
a linear structure also makes a difference to biocompat-
ibility [122, 123]. Moreover, a meta-analysis reported that 
lipid nanoparticles are significantly superior to polymeric 
nanoparticles in enhancing the brain bioavailability of 
drugs [124]. In addition, the coating of nanoparticles can 
also influence their properties: chitosan coating appears 
to improve mucoaffinity and diffusion efficiency in vitro 
[125]. In conclusion, there are several ways to modify 
nanoparticles and improve nose-to-brain delivery of a 
particular drug.

Safety considerations for nose‑to‑brain delivery
Safety is a fundamental aspect that needs to be addressed 
when developing drugs towards regulatory approval. In 
the development of intranasal drugs it is important that 
not only the drug itself but also the excipients of the drug 
formulation like mucoadhesives or nanoparticles are 
safe and do not cause any side effects. Regarding nose-
to-brain delivery it is important to consider systemic side 
effects as well as local nasal mucosa and CNS toxicity.

A major advantage of intranasal compared to systemic 
delivery is the limited amount of drug reaching the sys-
temic circulation and the liver [126], thereby reducing the 
risk of systemic adverse effects and rapid metabolization 
[127]. Different studies have confirmed general safety 
of intranasal drugs or have shown even higher safety 

compared to other administration routes. For instance, 
clinical studies testing intranasal recombinant erythro-
poietin recorded only mild adverse events without severe 
adverse events. Moreover, the number of adverse events 
in the treatment group was not increased compared to 
the placebo group [128, 129]. Furthermore, intranasal 
delivery of paliperidone palmitate, a drug which causes 
serious adverse events after oral administration, did not 
cause any alterations in blood parameters in rats, sug-
gesting intranasal delivery as a promising tool to reduce 
systemic side effects [130].

Due to the direct contact of the drug with the nasal 
mucosa, it is very important to screen for local toxic 
effects and to consider different factors influencing 
nasal conditions such as temperature, humidity or con-
ditions like rhinitis. Previous evaluation of cytotoxicity 
to the nasal mucosa was done in cell culture models of 
nasal mucosa, mainly including primary cells collected 
from the olfactory region of rats [131] and the immor-
talized cell line RPMI 2650 isolated from a squamous 
cell carcinoma of the nasal septum [132]. These mod-
els can be used to carry out cytotoxicity assays as well 
as permeation studies, e.g., measurement of transepi-
thelial electrical resistance [133]. The nasal tissue has 
protective functions which, among others, include muco-
ciliary activity to prevent exogenous particles reaching 
the upper airways. Thus, it is essential to ensure that the 
drug has no adverse effects on the ciliary movement. 
To this purpose, ciliotoxicity ex  vivo studies on sheep 
nasal mucosa were conducted, monitoring for ciliary or 
epithelial damage, necrosis or hemorrhage in response 
to nanoparticle-mediated drug delivery [77]. Interest-
ingly, nanoparticle formulation may decrease local nasal 
toxicity and improve safety at effective dosages. In rats, 
mucosa irritation was assessed after intranasal admin-
istration of free-diazepam solution compared with an 
aqua-triggered in-situ gelling microemulsion contain-
ing diazepam. While the free-diazepam led to mild to 
moderate histopathological mucosal lesions, the gelling 
microemulsion left the mucosa intact [107]. Thus, if a 
drug is known to cause local mucosal irritation, it may be 
possible to find carriers that can deliver the drug without 
local side effects [134].

Besides the adverse effects on mucosa and cilia, it is 
crucial to ensure that there are no effects on the olfactory 
nerve and the CNS. To predict effects on neuronal cells, 
in  vitro assays using neuroblastoma cell lines such as 
SH-SY5Y cells or primary neuronal cells, can be utilized 
[135, 136]. Lactate dehydrogenase, MTS (3-(4,5-dimeth-
y l th i a z o l - 2 - y l ) - 5 - ( 3 - c a r b ox y m e th ox y p h e ny l ) -
2-(4-sulfophenyl)-2H-tetrazolium) or MTT 
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetra-
zolium bromide) assays can be employed to assess cell 
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viability and cytotoxicity in response to different drugs. 
More advanced models would also include models of 
blood–brain barrier penetration, like transwell or micro-
fluidic models [137]. In addition, computational models 
could be used to predict CNS side effects [138]. Gen-
eral health and potential adverse effects in the CNS can 
be preclinically assessed in laboratory animals using the 
modified Irwin screen or the functional observation bat-
tery [139]. Moreover, preclinical evaluation includes 
neurotoxicity studies in rodents using histopathological 
evaluation of brain and nerve tissue to check markers for 
neuroinflammation or cytotoxicity. Neuroinflammation 
and neurotoxicity could lead to deficits in cognition or 
olfaction [140, 141]. Nonclinical CNS safety assessments 
of chronic nose-to-brain drug delivery should therefore 
incorporate evaluations of cognitive and olfactory func-
tions in laboratory animals, as the olfactory bulb and 
prefrontal cortex, which play key roles in olfaction and 
cognition, respectively, are anatomically proximal to the 
intranasal administration site. Relevant behavioral tests 
include the buried food or olfactory habituation/disha-
bituation tests for assessing olfactory function [142], as 
well as tasks probing executive functions such as deci-
sion-making and inhibitory control (delay discounting, 
five-choice serial reaction time task) [143, 144], work-
ing memory (delayed alternation task) [145], attention 
(attentional set-shifting task) [146], and behavioral flex-
ibility (reversal learning task) [147], which are heavily 
dependent on prefrontal cortex activity.

Clinical relevance of nose‑to‑brain delivery 
and pre‑clinical studies
Neurodegenerative diseases are one of the leading causes 
of death worldwide with an increasing prevalence in the 
aging society [148]. Although first slight improvements 
were shown for pathology-targeting antibody therapy, 
there is a lack of efficient disease-modifying treatment 
options due to incomplete knowledge of the pathophysi-
ology and the challenges to overcome the blood–brain 
barrier. Similarly, treatment of debilitating neurologi-
cal diseases such as epilepsy or migraine is hampered by 
insufficient drug levels in the brain and by side effects. 
Despite the success in preclinical studies, translation of 
nose-to-brain efficacy to the clinics remains challenging. 

Nevertheless, over the last twenty years there has been an 
increasing number of clinical studies evaluating nose-to-
brain delivery as a novel option for the treatment of neu-
rodegenerative and neurological diseases. The following 
sections will summarize current pre-clinical drug devel-
opment and clinical trials, as well as successfull applica-
tions for nose-to-brain drug delivery.

Drug development for nose‑to‑brain delivery for PD
PD is the second most common neurodegenerative dis-
ease and the most common movement disorder world-
wide, affecting more than 1% of the population over the 
age of 60 [149–151]. In addition to the classic motor 
symptoms such as rigor, tremor and postural instability, 
patients also show non-motor symptoms like cognitive 
deficits, anxiety and gastrointestinal dysfunction [152, 
153]. Symptoms like nausea, dysphagia and delayed gas-
tric emptying make alternatives to oral treatment even 
more necessary [154, 155]. The symptoms are based on 
a complex pathology that includes degeneration of dopa-
minergic neurons in the substantia nigra [156] and a 
striatal loss of dopamine [157], as well as accumulation 
and aggregation of alpha-synuclein [158], the main com-
ponent of Lewy bodies [159], in various regions of the 
brain [160]. Current PD therapy is limited exclusively to 
improving hypokinetic, motor symptoms with dopamine 
substitutes, such as L-DOPA, and therefore improves the 
quality of life of patients for several years, but also leads 
to the development of uncontrolled, involuntary move-
ments, known as dyskinesia [161, 162]. In addition, this 
therapy cannot address many motor (e.g., changes in 
speech) and non-motor disturbances (e.g., memory loss, 
anxiety disorders, gastrointestinal dysfunctions), or pre-
vent or halt the progressive loss of dopaminergic neurons. 
Thus, there is no disease-modifying treatment for PD, 
even though the number of patients continues to increase 
[152, 163]. There are different treatment approaches in 
the pipeline of drug development, with some focusing 
on further improvement of dopamine replacement, while 
others targeting alpha-synuclein-related pathology [164]. 
In the following section, we point out some examples 
for preclinical (Fig. 3) and clinical studies (Table 1) with 
intranasal delivery for treatment of PD. 

Fig. 3  Preclinical studies using nose-to-brain drug delivery in different rodent models of PD. The Thy1-aSyn mouse model overexpresses 
human alpha-synuclein under the Thy1 promoter, while the A53T mouse model overexpresses the A53T-mutant human alpha-synuclein 
under the mouse prion protein promoter. Models generated by injection of different toxins include 6-hydroxydopamine (6-OHDA), which 
is a synthetic monoaminergic neurotoxin. Haloperidol is an antipsychotic medication that has been observed to induce parkinsonism as an adverse 
effect. Rotenone is an isoflavonoid that is typically utilized as an insecticide and acaricide. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 
is a neurotoxin that selectively targets dopaminergic neurons

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Rotigotine is a dopamine agonist, which has promis-
ing potential for the treatment of PD [188], but its use 
is challenging due to the low bioavailability and high 
first-pass effects after oral administration, as well as 
application-site reactions after transdermal treatment 
[189]. Nose-to-brain delivery could be an efficient tool to 
improve the bioavailability of rotigotine. A pharmacoki-
netic study revealed that intranasal delivery of rotigotine-
loaded nanoparticles achieves higher brain levels than 
intravenous rotigotine application [87]. In line with these 
results, another study showed higher tyrosine-hydroxy-
lase signal in nigrostriatal dopaminergic neurons in the 
6-hydroxydopamine  (6-OHDA) rat model of PD after 
intranasal administration of lactoferrin-modified rotigo-
tine nanoparticles [190].

First-line therapy for PD includes monoamine oxidase 
B inhibitors, such as selegiline, as they reduce metabolic 
degradation of dopamine and its replacements. However, 
only 10% of the oral selegiline dose is bioavailable, lead-
ing to the need of high, daily doses causing a long list 
of adverse effects [191]. Preclinical studies have shown 
higher bioavailability as well as reduced motor deficits 
after intranasal administration of selegiline in a rotenone 
PD rat model [192, 193]. Further, intranasal application 
of selegiline nanoemulsion has led to increased dopa-
mine in the brains of rats [179].

Metabolic dysfunctions, including accumulation of 
lipids like polyunsaturated fatty acids and cholesterol, are 
involved in the misfolding and aggregation of alpha-synu-
clein [194]. In addition, abnormal binding of alpha-synu-
clein to oxidized lipid metabolites causes malfunction 
of mitochondria [195]. Accordingly, one approach to 
treating PD is targeting lipid metabolic abnormalities 
[196]. As antidiabetic drugs like insulin can regulate lipid 
metabolism, they have been explored in preclinical and 
clinical studies for PD. As mentioned before, insulin dis-
tributes along the trigeminal nerve and reaches the CNS 
after intranasal application in rats [14]. Several preclini-
cal studies showed that intranasal insulin treatment leads 
to an improvement in mitochondrial functions as well as 
a reduction of dopaminergic cell death in a rat 6-OHDA 
model of PD [197, 198]. Intranasal insulin treatment also 
attenuates motor and cognitive deficits in the 6-OHDA 
rat model of PD [197–200].

With increasing attention paid to gene therapies, 
RNA interference has appeared as an interesting thera-
peutic approach to reducing alpha-synuclein and its 
downstream pathology. Small interfering RNAs (siR-
NAs) can be delivered to the brain more effectively via 
the nose than through the intravenous route [46]. In the 
alpha-synuclein-overexpressing Thy-1-aSyn mice [201, 
202], intranasally administered siRNA-loaded poly-
meric nanoparticles are able to reach different brain 

regions including the substantia nigra, and significantly 
reduce SNCA mRNA expression as well as alpha-synu-
clein protein level in the brain [203]. Thus, intranasal 
administration using nanoparticles could provide a 
non-invasive route to chronically apply small nucleo-
tides to the brain.

In PD, about half of the clinical trials using the intrana-
sal drug delivery method focus on treatment with either 
insulin or glutathione, or a combination of both. Besides 
the beneficial effects of intranasal insulin in preclinical 
studies, a case study described a patient with manga-
nese-induced parkinsonism whose motor and cognition 
symptoms improved after four weeks of intranasal treat-
ment with insulin [204]. Furthermore, a clinical proof-of-
concept study for intranasal insulin including 16 subjects 
with clinically diagnosed PD or multiple system atrophy 
[205] confirmed the safety and showed improvement 
of motor and cognitive symptoms. Other clinical tri-
als in study phase II are running to test efficacy with an 
increased number of patients (Table 1).

Glutathione, which plays a protective role against oxi-
dative stress, mitochondrial dysfunction and cell death 
[206, 207], is depleted in PD patients [208]. Clinical tri-
als have been conducted to restore the glutathione lev-
els in PD patients by delivering glutathione intranasally. 
Two different phase I studies have confirmed the safety 
and CNS uptake of glutathione after intranasal adminis-
tration [209, 210]. The following phase IIb study showed 
symptomatic improvement after three months of intra-
nasal administration, although after a wash-out period 
of four weeks, glutathione was not superior to placebo 
[211]. Of note, a survey revealed that over 86% of patients 
using glutathione nasal spray rated this route of admin-
istration as convenient and easy to use, supporting good 
compliance [212]. In the context of intranasal delivery 
of glutathione, the MAD Nasal™ mucosal atomization 
device (MAD; Teleflex, Morrisville, NC) has been used 
in a randomized, double-blind phase I/IIa study [209]. 
The MAD is a syringe equipped with a soft, conical noz-
zle that forms a seal with the nostril, thereby preventing 
expulsion of the drug. The liquid drug is atomized into 
particles ranging from 30 to 100  µm [213]. For clinical 
studies involving intranasal insulin, the ViaNase™ deliv-
ery device (Kurve Technology, Inc. Lynnwood, WA) has 
been used [205]. ViaNase™ is an electronic atomizer that 
nebulizes a metered dose of the drug into a chamber cov-
ering the patients nose. Patients then inhale the drug by 
breathing regularly for a predetermined time.

As shown in Table  1, there are further studies using 
various drugs for intranasal therapy in PD patients. For 
example, a study achieved positive effects on cognition by 
treating PD patients with intranasal recombinant human 
erythropoietin [214].
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Drug development for nose‑to‑brain delivery for AD
AD is the most common cause of dementia worldwide 
with an increasing prevalence in the aging society. AD 
has two hallmark pathologies: extracellular beta-amy-
loid plaques [217] and neurofibrillary tangles composed 
of hyperphosphorylated tau [218]. The most prominent 
clinical symptoms are progressive memory deteriora-
tion, disordered behavior, and impairments in language, 
comprehension and visual-spatial skills [219]. There is no 
cure for AD, and current treatment options are mainly 
limited to symptomatic management. Recently, the U.S. 
Food & Drug Administration (FDA) has approved appli-
cation of plaque-reducing antibodies, which is hampered 
by severe side effects in a subgroup of patients.

An extensively studied approach for the treatment of 
AD is intranasal insulin, which is already being tested in 
clinical trials. Intranasal insulin restores the cerebral glu-
cose metabolism and mitigates astroglial activation and 
neuronal loss in a streptozotocin-induced AD rat model 
[220]. Further, intranasal insulin in rats restored levels 
of different AD-related, dysregulated microRNAs and 
decreased tau phosphorylation, amyloid-beta aggrega-
tion and neuroinflammation [221]. Moreover, intranasal 
insulin ameliorated memory and learning deficits in AD 
rat models in different preclinical studies [221–223].

Furthermore, researchers aim to slow the progression 
of neurodegeneration. Several AD mouse models (choli-
notoxin-induced, amyloid-beta-induced [224] and trans-
genic APP/PS1 mice) showed improvement of memory 
function and spatial cognition after receiving intranasal 
application of colivelin [225, 226], a synthetic derivate of 
humanin that plays a role in suppressing neuronal death 
[227]. Furthermore, intranasal application of basic fibro-
blast growth factor leads to improved memory in a rat 
model of AD [81].

The use of stem cell transplantation for the treatment 
of neurodegenerative diseases is very promising, albeit 
limited by the blood–brain barrier. Intranasal deliv-
ery could make it more feasible in the future. Repeti-
tive intranasal application of human neural stem cells 
decreases neuroinflammation, and enhances neurogen-
esis and expression of beta-amyloid-degrading enzymes 
in a APP/PS1 mouse model of AD [228]. Also, intranasal 
administration of the secretome of cortical neural stem 
cells to 5 × FAD mice reduces amyloid-beta accumulation 
and ameliorates memory function [229]. Plaque reduc-
tion, alleviation of gliosis, and increased neuronal density 
in certain brain regions have been seen in an AD mouse 
model after intranasal delivery of mesenchymal stem cell 
secretome [230].

Intranasal siRNA application is also a promising 
approach for AD. Intranasal administration of siRNA 
targeting the β-site amyloid precursor protein cleaving 

enzyme 1 (BACE1) combined with rapamycin, an 
approved immunosuppressant, led to a reduction in 
amyloid-beta deposition and improvement of cogni-
tion in a transgenic AD mouse model [231]. Another 
preclinical study combined siRNA targeting BACE1 
and siRNA targeting caspase-3, to inhibit neuronal 
apoptosis in 3 × Tg-AD mice. They constructed lesion-
recognizing siRNA-nanoparticles for intranasal admin-
istration. Results showed positive treatment effects on 
memory deficits in the 3 × Tg-AD mice [232].

Nose-to-brain delivery has been used in several clini-
cal trials for AD over the last decades. A number of 
clinical studies have explored the potential of intranasal 
insulin application for AD, showing that insulin could 
reduce amyloid plaques and improve verbal memory 
[233, 234]. Past clinical trials employed various dos-
ages, ranging from single-dose to long-term adminis-
tration, and used different types of insulin, including 
fast-acting insulin aspart [235], fast-acting insulin gluli-
sin [236], regular human insulin [237] and the long-
acting analog insulin detemir [238]. In these studies, 
insulin aspart showed superiority to regular insulin in 
terms of treatment efficacy [235]. Several studies con-
firmed the safety of intranasal insulin in patients with 
mild cognitive impairment and AD [67, 239]. Recent 
evidence suggests that intranasal insulin treatment 
increases the volume of certain brain regions, which is 
associated with memory improvement [240]. Intranasal 
insulin also leads to changes in inflammatory markers 
in the CSF, suggesting that intranasal insulin may not 
only treat symptoms but also influence the progression 
of AD [241]. On the other hand, there are studies show-
ing no significant treatment effects, which could be 
due to a small number of subjects [239] or due to inad-
equate delivery devices [67]. Pilot studies on intranasal 
insulin in AD patients and older adults at high demen-
tia risk using the previously mentioned ViaNase™ for 
drug delivery, showed sufficient insulin penetration 
into the brain via CSF analyses [237, 242]. Neverthe-
less, the trial-specific modified device demonstrated 
insufficient reliability in a clinical study, necessitating 
its mid-trial replacement with the Precision Olfactory 
Delivery (POD®) device (Impel Pharmaceuticals, Seat-
tle, WA) [67]. The POD® uses a liquid fluorocarbon 
propellant to inject a metered dose of liquids or pow-
ders to the olfactory epithelium without electronic 
assistance [69]. In addition, clinical trials are currently 
ongoing for intranasal stem cell treatment of AD. As 
mentioned above, preclinical studies in this field have 
shown promising results. The challenge is now to trans-
fer these findings from preclinical to clinical feasibil-
ity. Two studies investigating intranasal administration 
of bone marrow-derived stem cells in 100 participants 
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(NCT03724136) and 500 participants (NCT02795052), 
respectively, are currently in progress and expected to 
be completed in July 2025.

Drug development for nose‑to‑brain delivery for epilepsy
Epilepsy is a chronic neurological disorder character-
ized by recurrence of seizures of central origin. Those 
seizures are the result of the interaction between patho-
logical excitation and a lack of inhibition in the neuronal 
networks of the CNS. Current antiseizure medications do 
not cure epilepsy. They merely manage seizures and must 
be taken continuously, leading to lifelong exposure of the 
entire body to the drug, necessitating high safety stand-
ards. Although various antiseizure medications have 
been approved and most patients respond well to the 
therapy, about 30% of patients do not become seizure-
free under currently available treatment [243, 244]. One 
possible cause is the insufficient drug levels in the brain. 
Therefore, strategies like acute and chronic intracerebral 
microinfusion via drug pumps were tested in a rat sei-
zure model [244, 245]. Even though the studies showed 
beneficial effects in preclinical models, it is important to 
consider alternative, less invasive delivery routes. Non-
invasive approaches such as nose-to-brain delivery may 
help achieve higher drug levels in the CNS while mini-
mizing systemic exposure [126]. Another challenge in 
the treatment of epilepsy is to find an optimal applica-
tion route to stop acute seizures. Emergency treatment 
in epilepsy patients is generally administered orally or 
intravenously, if the patient can swallow during the sei-
zure or if a medically-trained person is available to inject 
intravenously. Therefore, intranasal emergency treatment 
could be an option to ease the administration especially 
in a non-medical setting at home and thereby accelerate 
treatment [246].

To maximize the effects of lamotrigine, a seizure-
suppressing substance approved for oral application, 
researchers developed lamotrigine-containing nanocap-
sules or nanoparticles for intranasal use. By now, there 
are a few studies on the pharmacokinetics and bioavail-
ability of intranasal lamotrigine in rats and mice, show-
ing promising results with high brain-targeting efficacy 
[247, 248], but further research has to be done especially 
regarding efficacy. Another orally-administered seizure-
suppressing drug carbamazepine has also been tested for 
intranasal delivery. Intranasal application of a mucoad-
hesive carbamazepine nanoemulgel to pentylenetetra-
zole-treated mice delayed the onset of convulsion and 
death compared to intravenously-injected animals [249]. 
The use of neuropeptides is another approach in the 
treatment of epilepsy. Intranasal treatment with nano-
particles containing thyrotropin-releasing hormone sig-
nificantly reduced the seizure afterdischarge duration 

and increased the number of stimulations required to 
reach a generalized tonic–clonic seizure in a kindling 
model of temporal lobe epilepsy [250].

Benzodiazepines, including lorazepam, diazepam, and 
midazolam, are the most commonly used substances for 
acute seizure management. When administered intra-
nasally in rats, a thermosensitive gel containing loraz-
epam-loaded nanostructured lipid carriers, reduced 
the prevalence of pentylenetetrazole-induced seizures 
by two-thirds and decreased the severity and dura-
tion of symptoms compared to the sham group [251]. 
Moreover, intranasal mucaoadhesive clobazam micro-
emulsion showed enhanced brain uptake in a pentylene-
tetrazole-induced mouse model compared to intravenous 
clobazam, leading to a faster increase in seizure threshold 
[111].

Based on the promising preclinical studies, intrana-
sal benzodiazepines were tested in human patients and 
approved for the treatment of acute seizures (Fig.  4). 
The first FDA-approved nasal treatments for acute sei-
zures are midazolam (NAYZILAM) and diazepam (VAL-
TOCO) nasal sprays [252]. In line with this, the European 
Medicines Agency (EMA) approved midazolam nasal 
spray (NASOLAM) in 2022 [253]. A retrospective study 
confirmed the efficacy and safety of midazolam nasal 
spray in humans [254], indicating it as a promising appli-
cation route. For intranasal application in acute seizure 
management, it is important that the delivery device is 
user-friendly and does not require any active participa-
tion from the patient. Consequently, conventional uni-
dose nasal sprays are commonly used in non-professional 
settings, whereas MADs are typically used by healthcare 
professionals for emergency treatment [255, 256].

Drug development for nose‑to‑brain delivery for migraine
Migraine is an episodic form of chronic headache that 
occurs in attacks, often accompanied by nausea and 
vomiting. There are different classifications of migraine 
by the International Headache Society Headache Clas-
sification Committee, such as migraine with or without 
aura [257]. An aura manifests itself, for example, in the 
form of very different neurological symptoms such as 
visual field defects, paresthesia and paresis [258, 259]. 
Migraine affects more than one billion people of all ages 
worldwide [260] and significantly reduces their quality of 
life with an impact on social life and work [261]. Women 
are three times more likely to be affected than men [262]. 
The pathophysiology is still not completely understood 
as it is a complex disorder of nervous system function 
including genetic causes and the influence of neuro-
peptides [263]. Therefore, treatment consists mainly of 
acute medication for pain relief, while preventive treat-
ment is not very established. Oral application of triptans 
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like sumatriptan, zolmitriptan and rizatriptan is used 
most frequently. Despite the established migraine treat-
ment with oral triptans, there is a need for optimization 
of the route of administration. After oral administration, 
triptans need to be absorbed from the gastrointestinal 
tract to reach the blood circulation and have to cross the 
blood–brain barrier to get to the CNS. On the way to 
the brain, a high amount of the drug gets lost, through 
first-pass metabolism of the liver, leading to the fact that 
high doses are required. Migraine patients often have 
gastro-intestinal complaints such as diarrhea, nausea or 
vomiting, which can occur as a symptom of the migraine 
or as an adverse side effect of treatment [264]. Neverthe-
less, low oral bioavailability of these compounds makes 
alternative delivery options for brain targeting necessary. 
In the following, we highlight preclinical studies investi-
gating nose-to-brain delivery of triptans as well as clini-
cal studies that showed efficiency for approved intranasal 
migraine treatment.

Solid lipid nanoparticles of sumatriptan succinate opti-
mized for brain targeting showed fast permeation across 
nasal mucosa in an ex vivo study using goat nasal mucosa, 
without altering the integrity of the mucosa [265]. Fur-
thermore, a pharmacokinetic study in rats showed higher 
brain levels after intranasal delivery of lipid sumatriptan 
nanoparticles compared to intravenous application [266]. 
A sumatriptan-loaded nano-ethosomal mucoadhesive 
gel showed beneficial effects on behavioral as well as bio-
chemical parameters in a nitroglycerin-induced migraine 
rat model [267]. Different pharmacokinetic studies in rats 
and mice demonstrated that zolmitriptan reaches the 
brain faster and in greater amounts when administered 
intranasally compared to intravenously [114, 268].

For the treatment of migraine, there are already 
approved triptan nasal sprays on the market (Fig.  4). 
Sumatriptan nasal spray was approved by the EMA in 
1996 under the trading name “Imigran nasal” and by the 
FDA in 2019 under the name “Tosymra”. Sumatriptan 
nasal powder has a better outcome in the reduction of 
nausea compared to oral sumatriptan in human patients, 
indicating the advantages of nasal treatment [269]. More-
over, zolmitriptan was also approved by the EMA in 2002 
and by the FDA in 2003 under the name “Zomig”. Zol-
mitriptan nasal spray is superior to zolmitriptan tablets, 
with rapid onset of headache relief (only 15  min after 
dosing) [270]. Although zolmitriptan nasal spray has 
already been approved, efforts are still being made to 
further optimize the marketed nasal spray by using dif-
ferent kinds of nanocarriers like chitosan nanoparticles, 
nanoethosomes or novasomes [268, 271, 272]. Proper 
drug delivery devices play a crucial role in ensuring effec-
tive treatment. Most approved triptan nasal sprays use 
Advaspray®, a Unidose liquid nasal spray (Aptar, Crystal 

Lake, IL), which is user-friendly but does not explicitly 
target the upper nasal space [213, 273]. To improve drug 
delivery to the upper nasal cavity, particularly the olfac-
tory epithelium, advanced bidirectional breath-powered 
delivery devices are used. One such approved delivery 
system is ONZETRA® Xsail® (Currax Pharmaceuticals, 
Brentwood, TN), which administers sumatriptan nasal 
powder [274]. Besides enhanced deposition to the upper 
nasal space, oral exhalation during application closes the 
soft palate, thereby preventing lung deposition [275]. 
However, one drawback of these advanced devices is that 
they require a certain level of patient compliance and are 
less convenient to use than traditional nasal spray.

Conclusion
Nose-to-brain delivery provides a promising option to 
circumvent the blood–brain barrier in a non-invasive 
route suitable for a long-term, repetitive and easy-to-
apply regimen. Nasal application is proven to be safe or 
even enhance safety of drugs compared to systemic appli-
cation in preclinical and clinical studies. Moreover, many 
studies have shown superior delivery efficacy of nasal 
applications compared to other application types. Never-
theless, the development of specific nasal delivery devices 
that target primarily the olfactory region for high delivery 
efficacy is challenging, currently limiting the application 
to potent drugs. Furthermore, a better understanding 
of the precise delivery routes and uptake mechanisms 
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will enable improvement of strategies, such as optimiz-
ing carrier systems and targeting specific brain regions 
or cells. In conclusion, the nose-to-brain delivery is a 
promising, innovative form of application with enormous 
implications for treating CNS diseases.
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